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CHAPTER 6 MULTIPLICATION OF INTEGERS

6.1 Operational Systems (W, <) and (Z, *)

In Chapter 4 we leamed how to add and subtract
integers. |t is natural to ask how integers shouid be
muitiplied.

With respect to the operation of addition, the whole
numbers are isomorphic to the positive integers, That
is, addition of whole numbers is just like addition of
positive integers, It is reasonable to require that mul-
siplication preserve this close relationship between the
whole numbers and positive integers, Let us recall
someof the properties of (W, *) which we should like
to carry over into (Z, *).

1. For all whole numbers aand b, a-b=b-a.
(Commutative Property of Multiplication)
For example: 3:7 =7-3
2. For all whole numbers &, b, and c,a+(b-c) =
(0 ° b) * Cs
(Associative Property of Multiplication)
For example: (2-3):4=2-(3-4)
3. For every whole numberg, 1-a=a-1 =a.
(1 is a Multiplicative Identity in W)
For example: 1-7=7-1=7
4. For every whole numbera, a-0=0-a =0.
(Multiplication Property of Zero)
For example: 3:0=0-3=0
5. For all whole numbers a, b, and ¢, ifc £ 0 and
c-a=c-b thena =b, '
(Cancellation Property of Multiplication)
For example: 1£7-a =7°13 then a =13
There is one property of theoperational system
(W, + °*) which relates the operations of addition
and multiplication. This property is illustrated in the

following example,
Suppose we compute the product 7x13 in the usual

way:

13

x7
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In this computation, we have actually computed two
simpler products

7x3=21 and 7x10=70
and then computed their sum
21470 = 9

The reason this works is easy to understand if we pic-
ture the product 7x13 as a rectangular array that has
been split into two arrays:

a Sxen st s 2N er TP i e S A R B R e S R T B e A S B R R S R

it are o

10 3
o e 0o 6 0 06 0 O o O o o o
® 060 © 0 06 & 0 o o e 0 o
o 0o 06 0 06 06 06 9 o O o 0o O
7 e 0o 6 6 6 06 0 O 0 0 o © o
o 06 06 5 0 0 0 & % o o O
o 0o 06 06 6 06 0 O 0 0 o o O
oo 6 6 0 06 &6 0 0 o o o0

7x10 7x3

On the left we have a 7x10 array andon the right a 7x3
array. The number of elements in the array does not
change by the splitting, so we have

7-(10+3)=7-10+7-3
Similarly, we know that

7(4+6)=7-4+7-6,
13-(98 +2) =13-98 +13-2,
or in general
6. For any whole numbers a, b, and ¢,
a-(b+c)=a-b+a-c
(Distributive Property of Multiplication over
Addition)
We should also like the distributive property to apply
in (Zo + )

6.2 Exercises
1. For each of the following state the property for
multiplication of whole numbers that justifies

the equality.
(0) 87 x1 =1 x87
(b)87 x 1 =87 ;

(c) (98 - 97) x 46 = 46
(d)5 x(2 x83)=(5x2) x83
(e) (25 x 38) x 4 =(38 x 25) x 4
(£)(38 x 25) x4 =38 x (25 x 4)
2, Without computing justify:
(a) (43 x 28) x 76 =(76 x43) x 28
(b) 87 x (43 x 76) = (87 x 76) x 43
(c) 8 x (69 x 25) =69 x (25 x 8)
3, State the commutative property for addition of
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5.

6.

10.

whole numbers.

State the associative property for addition of
whole numbers.

What is the identity element for addition of
whole numbers?

What is the identity element (if there is one)
for each of the following systems.

(@) (54 () (W, 9
(B (Zg.+) (9 (Z, 4
() (ZgH (h) (W4
(d) (Z4-) (i) (W)
(&) (W, 4 i) (Z,-)

. Compute each of the following:

(a) 8 x(9x7) (d) B8x7)x9
(b) 9 x(8x7) (e) (47 x73) +(47 x 27)
(¢) 7x(9 x 8) (F) (47 x73) - (47 x 27)

. Using the properties of this section, prove that

ifr, s, t are whole numbers,
(@) (res)et=(ret)es (c) re(set)=(r-t):s
(b) (res)et=(tes)er (d) re(set)=s-(t-r)

For example, exercise (a) may be done as follows:

(res)et =r-(s-t) Multiplication of whole num-
numbers is associative,
=r-(t-s) Multiplication of whole num-
bers is commutative,

=(r-t)-s Multiplication of whole num-
bers is associative,

. From your experience with multiplication of

whole numbers what seems to be true if the fac-
tors are ordered and grouped differently? (The
generalization referred ¢o here is sometimes
called ““the rearrangement property for multi-
plication of whole numbers’’.) '

Consider the two sets (Sandwiches and Bever-
ages)
S ={cheese, jelly, peanut butter} which is ab-

breviated {c, i, p} and B={milk, tea} which we
abbreviate {m, t}.

(a) Interpret the ordered pair (j, m).

(b) List all the possible ordered pairs that can
be obtained by using an element of S as the
first element and an element of B as the
second elament of each ordered pair.

(c) How many ordered pairs did you get in (b)?

(d) List all the ordered pairs if the first ele.
ment must come from B and the second from
s.

(e) How many did you get now?
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(f) What property seems fo be illustrated here?

(g) Suppose S or B had just one element. How
many ordered nairs would we now get?

(h) Suppose S or B had 0 2lements. How many
ordered pairs would we get? What generaliz-
ation does this suggest regarding a product
having 0 as a factor?

11, Compute
(a) 7x (20 +7) (e) (47 x39) - (47 x 29)
(b) (7 x20) +(7 x7) (f) (37 x 43) - (27 x 43) N
(c) (23x87)+(23x13) (g) (6} x 8) +(6% x 12) U
(d) (76 x 38)+(24 x38) (h) (6% x 31) + (6% = 63)
12. Using the fact that multiplication of whole num- U

bers is commutative and distri butive over addi-

tion, prove that for all whole numbers a, b,and ¢,

(o) (b+c)a=bat+tca (Recall that ba=b-q, ca
= ¢c-q, etc,)

(b) o(b ~ c) = ab —ac whenever b is not less
than ¢

Loyt o S et

-l
-

(¢) (b-cla=ba—-ca whenever bis not less

than ¢
12. Is it true that 5 +(2 x 4) =(5 +2) x (5 +4)?

14. |s addition distributive over multiplication in
(wo t, ')?

6.3 Multiplication for Z

In order to define multiplication as an operation in
Z, we must show how to assign to each order pair (a, b)
of integers a third integer c called ‘‘the product of a
and b”’. We will use the definition of multiplication for
whole numbers and the six properties we want preserved,
as guides to the rule of assignment for *‘-** in Z, Under
these circumstonces, there are three cases which must
considered in making our definition:

1. Both aand b are positive.
2. Both aand b are negative,
3. ais positive and b is negative,

We also want our definition to make sense in situations
where the integers have applications to real life prob-
lems,

Question: Why is it unnecessary to consider the
case ‘‘a negative, b positive’’?

6.4 Multiplication of Positive Integers

The systems (W, +) and (W, +) are isomorphic, In
fact; both of these systems are isomorphic to (P, ¥)
where P is the set of positive integers, The isomorph-
ism may be illustrated by

5 4w g.a——-»-l-s

4 +5e—q +5+e—sTq + 75




We alreudy know how to multiply whole numbers.
Thi s knowledge suggests a definition of multiplication
for the positive integers.

I3 x4:=12 suggests '3 x *4 = *12
11 x14 =154 suggests ‘11 » *14 = *154
8 x0=0 suggests '8 x 10 =10

These examples imply that we should make the
following definitions: The product of two positive in-
tegers is the unique positive integer whose absolute
value is the product of the absolute values of the fact-
ors. For every positive integera, a - 0 = *0-a = *0.

6.5 Multiplication of a Positive Integer and a Negotive
Integer

Since (under +and +) the positive integers behave
exactly 'ike the whole numbers, let us agree to delete
the elevated plus sign. For example, instead of writ'ng
1+ e shall write simply ‘2"’ and think of 2 as be-
ing a positive integer without saying “positive’. We
shall write “‘0’’ rather than *’*0’’ or ‘0"’ and think of
0 as being the addition identity element for integers.,
Moreover, it will be more convenient to regard only the
strictly positive integers as being positive and the
strictly negative integers as negative, With this agree-
ment, every integer is either positive, zero, or nega-
tive. In other words, for every integer n, exactly one of
these conditions must hold

0<n,0=n,0rn<0,

Let us now write a few computations that may sug-
gest what the product of a positive integer and a nego-
tive integer should be,

I x3 =9 Ix3=9
I x2=6 2x3=6
I x1=3 1x3=3
3x0=0 0x3=0
3 x=1=0 “1x3=0
3x=2=0 =2x3=0
3x-3:=0 =3x3=0

Ir: the left column of equalities the second factor de-
craased by 1 as we move down, In the right column of
equal ities, the first factor is being reduced by 1. In
both columns the products are decreasing by 3. These
lists suggest that the products for the last three lines
should be =3, ~6, and ~9 if the products are to con-
tinve to decrease by 3. |t appears that the product of
a positive integer and a negative integer should be
negative regardless of which is the first of the pair.
Furthermore, the absolute value of the product should
again be the same as the product of the absolute val-
ves of the factors.

Therefore, if r and s are two integers, one nega-
tive and the other positive, we define the product res
to be the unique negative integer with absolute value

equal to |r |- |s]. it follows from this definition
ﬂ'ldf r-s=-8S8-r

Later we shall give other reasons for adopting this
definition and suggest a mathematical basis for deriv-
ing them. L et us now see some illustrative examples.

Example 1: Compute =8 x 7

-8 x7 |=|-81x 7|
=8 x 7 (Note: Here 8 and

7 are whole num-
L.--\

LA R 7]

=56

Since —8 is negative and 7 is posi-
tive, ~8 x 7 is a negative integer.
Hence, =8 x 7 = ~56. '

Example 2: Compute 9 x =6
19x=6|=19 |x|=6]
=9 x6
= 54
Therefore, 9 x =6 = ~54.
Example 3: Compute (4 x ~3) x 2
(4x—3) x2="12x2
= ~24,

6.6 The Product of Two Negative Integers

The only remaining products to be considered are
those involving two negative integers, Once again let
us try to obtain a clue by recognizing a pattem.

-3x3="9 I3Ix-3="9
-3x2=-6 2x-3="6
-3x1="3 1 x=3="3
-3x0:=0 0x-3:=0
-3x-1=0 -1x-3:0
‘3x"2=D -2 x=3 =0
~3 x =3 =[] 3 x-3:0

In the left column of equalities the second factor is
being reduced by 1 in moving down. In the right column
of equalities the first factor is being reduced by 1. In
both columns, the products are increasing by 3. The
above lists suggest that the last four products should
be0, 3, 6 ond 9 if the products are to continue to in-
crease by 3.

These examples suggest the following definitions:
The product of a pair of negative integers is the unique
positive integer which has absolute value equal to the
product of the absolute values of the factors. For
every negative integer a, a-0 = 0-a = 0. Later we
shall give other reasons for adopting these definitions
ond suggest a mathematical derivation.

We caon summari ze our definition of multiplication
of integers as follows:
For all integers rand s,




L |r-s|= |r| : |$|.

2, I r and s are both positive or both negative, r-s
is positive,

3, 1f r and s are such that oneis positive and the
other negative, r-s is negative,

4, vr-0=0-r=0,

With the above definition as rules for the assignment,
multiplication is an operation on Z. That is, for each
ordered pair (a,b) of integers there is a unique integer
€= a-b calied “‘the product of a and b'’, Furihermore,
it can be shown that the six properties of (W, +, -)
stated in section 6.1 are also properties of (Z, t, ).
The general rules for multiplication of integers may

be clarified by the following illustrative examples.

Example1: Compute =3 x 4
=3 x~4|= |73 |x |~4|
=3 x4
=12,

Since ~3 ond ~4 are both negative,
the product is positive, Hence, =3 x
—4 = 12 (What kind of number is 12
here?)

Example 2: Compute (77 x ~2) x ~3
(T7%x"2)x "3=14x"3

= -42.

Example 3: Compute =9 x (6 x ~4)

—9x (6 x"4)="9 x"24

=216
6.7 Exercises
1. Compute:
(a) =23 x27 " (e) =5 x(2 x ~47)
(b) 33 x~37 (F) (T5x2) x ~47
(c) =43 x—47 (9) (743 x ~4) x =25
(d) =57 x~88 (h) =43 x (T4 x ~25)
2. Compute:

(@) (C17x=7) +(T17 x3)
(b) (F17)x (77 +73)
(c) (738x37) +(28 x37)
(d) (~38+28) %37
(e) (~83x~67) +(—27 x~67)
(fF) (737 x73)+(37 +73)
*3. Supposer, s, and tare integers,

(a) Give a rule for determining whether (r-s) -t
is positive or negative, What about r-(s- 1)?

(b) Try to justify that |(res) <t] = [re(s-1) ]|
(c) Give a general way of computing l(rs) - t]

(d) Prove that
(V)r-(s-1) - (r-s)-t
(2r-s=s-r
4. Let us retum to considering an integer as a set
of ordered pairs and see how multiplication may
be defined. You recall:
3= {(0,3), (1,4), (2,5), ...}
-2 = { (210): (3rl)l (412)0 * 0 °}

[y

4= {160) (70), (82),...}

Let us define a multiplication of two ordered pairs as
follows:
(a,b): (c,d) = (ad+be, ac+bd)
so that (2,5)+(5,3) = (6+25, 10+15)
= (31,25)

Observe that (31,25) is in the set for 76.,

(a) Take two other ordered pairs, one from 3

and one from —2, Is their product in 67

Reverse the order of the factors, Is their
product the same?

(b) Toke oneordered pair from ~3 and one from
=2, Is their product in ¥6? Reverse the order
of the factors. |s their product the same?

*(c) Check that [~=4 x (=3 +*2) ] ond [ (4 x
=3) +(~4 x *2) ] are ordered pairs of the
same integer by using in place of each in-
teger one of its ordered pairs and then using
the definitions of addition and multiplication
of ordered pairs,

*(d) Check that [(—4 x =3) x *2] and [~4 x
(=3 x 12)] are ordered pairs of the same
integer by the methodused in (c).

*(e) Assume the familiar properties of addition
and multiplication for whole numbers. Use
the ordered pairs of whole numbers,

(a,b), (c,d), (e,
to check that:
(1) Addition of integers

a. is commutative: [(a,b)+(c,d)] and
[(c,d)+(a,b)] are ordered pairs of the

same integer,
b. is associative
(2) The sum (d,d)+(a, k) and (a,b) are ordered
pairs of the same integer.
(3) The sum (a,b)+{b,a) is on ordered pair
of the integer 0.
(4) Multiplication of integers
a. is commutative: (a,b)(c,d) and

(¢,d) (a,b) are ordered pairs of the
same integer

—




b. is associative
c. distributive over addition.

(5) The product (d,d)- (a,b) is an ordered
pair of the integer 0.

(6) The product (d,d+1) - (a,b) and (a,b) are
ordered pairs of the same integer,

5. The “least’’ ordered pair of an integer is the
ordered pair having 0 for one of its members,

a) Find the least ordered pair for cach of the
integers
m7z () =7 (30

(b) For eachof the following ordered pairs,
find the integer containing it

(1) (0,12) (2) (12,0) (3) (38,47)

(c) Compute each of the following, then state
the least ordered pair that is in the same
integer,

(1) (0,7) +(9,0)
(2) (0,7) - (9.0)

6) (7,7)-(9,0)
7 0,1)+(9,0

(51 (0,7)+(0,9) (8) (1,0):(9,%
(4) (0,7)-(9,0) (9) (1,0)+(0,1)
(5) (7,7) +(9,0)

6.8 Dilations and Multiplication of Integers

Let us begin with a line in which one fixed point
is labeled *'C", Consider the following mapping of the
line onto itself: The mapping assigns point C to itself,
but to any other point P on the line it assigns the point
P’ such that P is the midpoint of segment CP' . This
mapping is illustrated by the arrow diagram
- - O —e= - -

o G c ’ »

For this mapping, the distance CP’ is twice the dis-
. tance CP. Thus the mapping corresponds to

n 2n

which takes whole numbers into their doubles, If we

denote this mapping, which doubles distances from C,
by *“2’" (read: 2 prime), we have

2': P——P'
2': C——sC
2': Q=—Q’

In a similar manner we define 3’ to be the mapping

that takes any point P into a point that is three times
as far from C ond on the same side of C as P. In gener-
al, if d is a whole number, **d’’* will denote the map-
ping that takes any point P into a point that is d times
as far from C and on the same side of C as P, Such

mapping is called a dilation, Summarizing, we have:
If dilationd’: P—=P’, then CP’ =d-CP
and P is between Cand P’,d’: C—C,
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Question: Does d’ map the line onto itself?

Let us now define another mapping that also
leaves C fixed, This mapping takes any point R to a
point on the other side of C, the same distance from C.

b . o— o= e —
R’ C R

Since this mapping reflects R in C, it is called ‘‘the re-
flection in C" ond isdenoted ‘‘~1’" (read: negative
oie prime). Such a mapping is also called o symmetry
in point C because points Rand R’ are located sym-
metrically on either side of C. However, in this chapter
we shall continue to call such a mapping a reflection in
a point,

-1, R———=R"’
-]l: R'—'_’R
“1’: C——e(C

Let us now 3ee what happens when we compese ~1’
with 2’ . Such maps leave C fixed, so let point P be
different from Point C, Locate points Q, R, and S so
that RS = SC = CP = PQ.

2
R S C P —— @

oy
Then2': P——=Q and ~1’ : @R, The compo-
sition of —1’ with 2’ tokes P into R via Q. Similarly,
the composition of 2’ with =1’ takes P into R via S.

We shall see that composition of such mappings is
analogous to multiplication of integers. Anticipating
this analogy, let us agree to express this composition
by useof the multiplication sign ‘‘x"". We may now
write

2’ x~1';
=1’ x2':

We shall use *~2°"" as on abbreviation for ‘2’ x

P_’Ro

p—R.

=1", Similarly, =3’ =3’ x "1’ and =4’ =4' x~1’.

We shall also say that =2’ ‘' contains a reflection®’.
-3',-4 ,"5',...also are said to contain a reflec-
tion.

Let us look at a few more examples.

K R ] c ’ Q T L
- - T e o
“3 -2 | 0 1 2 3 4

Example 1: 3': P——=T

-3': p—K
Example 2: 3': S—=K
-3':; ST
(T2’ x2°):

because =2’: S—=Q and

Example 3:

2:Q—L

N B, W T e B TN ¢ PSPl RN

y




so that the mappings ~2' x2' and
~4' have the same effect on S.

Example 4: Let us now use only the integer

names for the points.

(' .3') :1—=6, ~4—"24
6 1—6, ~4— "N
(-2'<3'): 1—6, ~4— 24
6'  :1l—6, ~4— 24
(273 ) 1—=6, ~4—="24

What do these examples suggest?

It will be convenient to define the magnitude of
such a dilation mapping. The magnitude of the mapping
d’, where ’d"’ names any integer, is the same as the
absolute valueof d, that is |d|. We shail use the same
vertical bar notation to denote magnitude, Thus, |d']
= |d|. In particular

13'|=|3]=3
-3'|=1-3]-3
Let rand s be any integers; r’ and s’ their cor-
responding mappings. Then the composite mapping r! x
s’ has the following property:
o' xs'|=1[e'] - |s’]
because s’ enlarges by a factor of |s’|and ¢’ enlarg-

es the enlargement by a factor of [r’|. The net result
is to enlarge Y a factorof |r'| - |s’].

I neither t' nor s’ contains u reflection, the com-

position mappingr’ x s’ contains no reflection, If both
r' and s’ contain reflections, then r’ x s’ contains no
reflection. |f either r’ or s’ (but not both) has a re-
flection, then r’ x s’ contains a reflection. Let us say
that r° and s’ have the same direction if either both
contain reflections or neither contains a reflection.
Thenr’ and s’ are the same mapping if they have the
some direction and magnitude,

Let us agree to call every mapping d’, where d is
any integer, a dilation. The set of dilations together
with the operation '‘x’° expressing compositions de-
termine a mathematical system witich we shall denote
w ‘((D" x)".

To compute the composition of two mappings will
mean to express the composite mapping as a mapping
without an indicated composition. Thus, the computed
mapping for =3’ x 72’ is 6’ and we shall write —3’ x
-2' =6’ bacause 3" x ~2' and 6' have the same
direction and magnitude,

The resemblance between (Z, <) and (D', %)
should be quite apparent by now. In the first place,
there is a one-to-one correspondence between the in-
tegers Z and the dilations D'. Moreover,
composition of dilations strongly suggests how we
should multiply integers.

6.9 Exercises
Use the integer names for points of our number

no

line and let our dilations be with respect to C.

1. Into what point does 7' map each of the follow-

ing:
(@) 6 (b) —6 (e) 1 (d)0
2. Into what point does~7' map =ach of the fol-
lowing:
(a) 6 (b) —6 () 1 (d)O
3. Into what point does 2’ x =3’ map each of the
following:
@i ("1 (90 (i (e "I
4, Compute:
(a) =7’ x 6’ (g) ~35'x 735’
(b) 7' x =6 (h) 45° x 45°
(c)6'x "7’ (i)(2'x=3") x4'
(d) =6’ <7’ (i) 2 x (73" x4")

(e) 715’ x~15" (k) (717’ x25") x 4’
(F) 25' x25° (1) =17' x (25" x 4)

*5 Letr', s’, t' beany dilations. Prove that com-
position of dilations

(a) is commutative: r'xs’ =s’ xr

=8 x°r

(b) is associative: (r'xs’) xt'=r'x (s'xt’)
(c) has 1’ as an identity.
6. What cain you suy about the dilation 0°?

6.10 _Another Isomorphism

We would like to have the positive integers, to-
gether with zero, behave just like the whole numbers
under multiplication. In fact, it is for this reason that
we are using the same symbols. ‘2"’ names either a
whole number or a positive integer——we can tell which
only from context. Composition of dilations that do not
have reflections behaves exactly like multiplication of
whole numbers. For this reason wemay define the prod-
uct of any pair of integers r and s by using the informa-
tion we have for (D', %).

In order to define r . s we need to know its ok-
solute value and its direction. Let res] = |r' xs’ |
= |r'| x |s’| ond let t'e direction of r- s be negative
if either r’ or s’ (butnot both) have a reflection;
otherwise, let the direction of r - s be positive. With
this definition, (Z, +) and (D', x) are isomorphic.
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6.11 Multiplication of Integers through Distributivity

In section 6.1 we said that it would be nice if

(Z,+, - ) retained the distinctive properties of (W,+, *).
In order to extend the isomorphism between (W,+)and
the non-negative integers, we assumed that the product
of two positive integers is a positive integer, Then by
observing patterns of multiplication, we were led to
definitions in the cases where one or both factors are
negative or zero. We found that these definitions did
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preserve the desired properties.

Are there other possible ways to define multipli-
cation in Z and still retain those properties? Could
such alternative definitions lead to results differing
from those we have already obtained. Fer example,
could r+0 = r for every integer ¢ ? Could the product of
two negative integers tum out to be negative integer?
(For instance, could =7+ 713 = ~91?)

In this section we shall show that if ‘-’ is as-
sumed to be a commutative, asscciative, and distribu-
tive operation, the customary rules for computing prod-
ucts are actually forced on us,

Let us begin by stating o basic assumption which
we have been using over and over, To illustrate this
assumption, which we shall soon name, consider the
easy computation

(2+3)+4=5+4
=9.

The symbols ‘2 + 3'* and *5’* both name the same
number so we feel free to replace ‘2 +3'° by ‘5", In
the last step we replaced ‘5 + 4'* by ‘9"’ because
they both name the same number.

In mathematics we frequently replace one name
for an object by another name for the same object, as-
suming that this kind of replacement is permitted. This
assumption can be stated precisely as follows: The
mathematical meaning of an expression is not changed
if in this expression one name of an object is replaced
by another name for the same object. This assumption
will be called the Replacement Assumption or simply
Replacement, We shall be making frequent use of this
assumption without mentioning it.

The second assumption is that multiplication is
an operation on Z, For each pair of integers r ond
s, there is a unique integer r-s,

The third assumption is that multiplication of in-
tegers is commutative, For every pair of integers ¢
ands, rs = sr,

The fourth assumption is that multiplication of in-
tegers is associative, For every triple of integers r, s,
ond ¢, r(st) = (rs)t.

The fifth assumption is that multiplication is dis-
tributive over addition. For all integers r, s, and 1,
r-(s+t)=rs +r.

The sixth and final assumption is that the product
of a pair of positive integers is a positive integer and
for every pair of integers r and s, the absclute value
of r-s is equal to the product of the absolute values of
rand s. :

These six assumptions may be summarized as

fol lows:

A.1 Replacement.
A.2 Multiplication is an operation,
A.3 Commutativity,
A.4 Associativity,
A.5 Distributivity.

A.6 The product of two positive irtegers is @
positive integer.
We are now ready to prove some further useful proper-
ties of the system (Z, + - ):

T1: Concellation For Addition

We will prove that for integers, whenever x + b =
y + bit follows that x = y.

If x + b=y +b then it follows that (x +b) + ~b =
(y +b) + ~b because we are adding ~bto the same
number, only using different names x +bandy + b for
this number. Using the associative property for addi-
tion of integers and Replacement, this equality may be
written as

x +(b+~b) =y +(b+~b)

But b + —b = 0. So, because of Replacement, we
now write

x+0=y +0.

0 is the additive identity for integers, so x +0 = x and
y +0 =y. Again using Replacement, we obtain x =y.
We have thus shown that if x + b=y + b, then x =y, It
also follows readily that if b + x =b +y, then x =y,
We shall refer to these generalizations as Cancellation

for Addition.

T2: Each Integer Has Exactly One Additive Inverse
Suppose the integer r had two inverses, say s and
t. Then by definition of additi ve inverse,

s+r=0and t+r=0.

Butifs + randt +rare both 0, wehaves +r=t+r.
From conceliation for addition we have

s =t

Hence, we can have but one additive inverse of any in-
teger r. We shall usually denote it by *“~r"’.

We are now ready to give convincing arguments for
certain rules for computing products of integers, We
shall begin with a rule, which we previously adopted
as a definition.

T3: For every integerr, r<0 =0-r=0
We already know that r=r + 0.

rer=ter Multiplication is on opera-
tion

re(r +0) =rer Replacement of ‘r"" by
ll' + o”

(rer) +(r+0) =r-r  Distributivity
(re¥) +(r-0) =(r- ) +0 O is the cdditive identity

r-0=0 Concellation forAddition
O:r=r-0 Commutativity
O-r=0 Replacement

This generalization or theorem says that the prod-
uct of two integers is zero whenever one of the integers |
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(or both) is zero. You recall that in Section 6.6 we de-
finedr-0 =0-r = 0. T3 shows that if we make the de-
sired assumptions about ** ."’, there is really no
choice in the definition of r-0: It must be zero! Those
desired assumptions place further restrictions on the
rules for computing products. These restrictions are
demonstrated in T4 and T5.

T4: For every pair of integers rand s, ~(r-s) = (r- )
and ~(r-s) =("r-s).
This says that the additi ve inverse of the product
of a pair of integers is the product of either one of the
integers and the additive inverse of the other,

For example,
~(2-3) =(72-3)
ond —(2:3) =(2-73).
By our assumption on products of positive integers,
2-3 = 6, Therefore, this rule tells us that =2.3 =
2-73="6.
A proof for rule T4 will now be given: We already
know that

t(s + 7s) =(rs) + (r-"s)

because of distributivity. But s + s = 0, so the left
number becomes r- 0 which we know from T3 is 0.
Therefore,

0=(rs) +(r-"s)

Whenever a sum of two integers is 0, the integers are
additive inverses of each other, Hence,

“(r-s) =(r-"s) (and also (rs) = —(r-~s) ).

This completes the proof that the additive inverse of
a product of two integers is the product of either in-
teger and the additive inverse of the other.

From this generalization we can conclude further
that

(r-=s)=(Tr-"s) Q)

ond ~(=(r-s))={"r-"s). (2)
On the left side of this last equation we have the ad-
ditive inverse of the additive inverse of (r- s). The ad-
ditive inverse of the additive inverse of an integer is
the integer itself. We can see this from the following
equation. If

t+"t=0,
then t and "t are additive inverses of the other, so
that t = =("t). Making use of this fact and (2) above,

we obtain
res="r-"s,

This proves the following important generalization,

T5: The product of a pair of integers is the same as
the product of their additive inverses.

Ifr and s are negative integers, it follows that
their product is the same as the product of their in-

verses, or a positive integer, For example,

—7-"4:-=7-4-28.

6.12 Exercises

*1. Using themethods of section 6.11 prove the
fellowing:

(a) Ifx +3 =y +3 then x =y for integers
(b) 3 has but one additive inverse.
(¢) 3-0=0
(d) 3:72="13-2
() (3 -2 =6
(f) (T3) - r="r for every integerr.
2, Construct a flow chiart for computing the prod-
vct of a pairof integersr, s.
3. Compute eaclt of the following ifr = —4, s = =7,
t=9.

(a)r+s (9) (rs) t (m)r -t

(b) r +~s (h) (et) s (n) =(r - 1)
(c)r-s (i) (st) r (o) “r+t
(d) r (s+1) (i) 2 (p) =2¢ + =3t
(&) r(s -1 (k) 3 (q) 24 2
() (rs) - (rt) (1) 2s (r) 2 - s2

4. Find the solution set from the set of integers
for each of the following conditions.

(a) x2 = 4 () (x+22:-9 "

(b) |x| =2 . (9) by -32=9
(c)y2 =4 (h) (x+2) (x =3) =0
(d) x2 < 4 (i) (x+2)2<5

(o) Ix| <2 (i) y-22 <5

(k) x2 +3x =0

5. Picture the solution set for each of the exercis-
es in 4 by using a number line and enlarging
dots. Thus, if your soiution setis {~1, 2} its
picture or graph is

——l————o—

2 "1 0 1 2 3

*6. Prove that if the product of a pair of integers is
zero, at least oneof the factors is zero. (Hint:
Consider the possible directions for the pair).

*7. Prove that ifr +r =0, thenr=0.

*8. Prove that: (a) Ift Z0ond rt = st, thenr = s,
(Cancellation for Multiplication)

(b) For all integersr, s, and t,
Nr(s -t) =rs =t
(2) (s +t)r =sr + 11,
(3) (s - t)r =sr - tr,

gy g gL e



*g, Compute: (r, s, t are integers) : \ (a)2 x2 ()4 x4 (i) g~ 5
(a) (r+1) (r+1)  (£) (e=1) (r=T) (k) (r+1) (1) : (b)2 x4 (F)4x8 (i)8x%

(b) (s+2)(342) (g) (s-2)(s-2) () (s+2) (s-2)
(€) (443) (+43) (1) (4-3) (1-3)  (m)(1+3) (+=3) @2x8  (@8x8 Wy
@2+16 (Mix8 ()<

(d) (r+1) (142) () (e=1) (r=2) () (r+1) (r-2)

(¢) (s42)(s43) (i) (s-2)(s-3) (o) (s+3) (s-3) obse

*10. lfr, s, t are any integers and r < s, prove: 1 1 b
() 2r< 2s s 64 ' ¢
(b) 3 < 3s ‘T. :: 4
(c) ot < st i 0<t \.@
(d) rt > st if t <0 2 4 ——
(e)r2>0 if r£0 \ : \
(f)r+t<s+t 5

11. Write an equation for each of these sentences g :T &
and then find all the integer solutions, : H # ‘
(a) the double of an integer is =12 v ?’ ‘
(1) the double of an integer is 3 less than the 3 1 *%
integer.

14. (a) |f a hot rod moves at a fixed speed of 4
feet per second fo the ri ght, what interpre-
tation would you give to @ speed of ~4
feet per second?

i (c) the square of an integer is less than 20 but
greater than 4.

(d) the sum of an integer and its successor is

b
(e) the product of an integer and its successor (b) I the hot rod starts at 0 on the number line
is 42. (measured in units of 1 foot) and has @
: . \ speed of 4 feet per second (fps), where will
/ 12, Make two strips with scales as shown: " the hot rod be in 3 seconds? If we think of

the place on the number line the hot rod is
at the moment, how might we interpret the

{ 1 ! |. 1|¢ instant —3 seconds?
I
| @ Hot Rod

! -t ! 4 4 e
l (a) Try to find a way of using your strips to - -2 ° 2 ‘
F_ compute products. Draw a picture showing (c) Let us agree to interpret 4 3 as a product
? the position of your strips for the products that locates the hot rod on the number line if
l (1)2 =2 it starts of 0, where 4 is the speed in fps,
] 2)2 x4 and 3 is the number of seconds from the ;
g time it was at 0. Interpret the following prod- ;
) (3)2 ~8 ucts and see whether your interpretations is |
l (4) 4 x2 consistent with oyr rules for multiplying
E ' (5)4 x4 integers:

(b) Notice that the scales do not show all the (1 4x72

_ whole numbers. Should the exact midpoint (2) —4x2
3 _ ' between themarkings for 2 and 4 be 32 If 3) —4x~2
h " not, should it be more or less? Why do you .
l think so? The strips you have constructed 15, We have already noted the following:
- make a crude slide rule for multiplication. 7+-2=7-2

13. The figure shown is a nomogram for multiplica- 7-."2:=7+2

tion. The figure shows how to compute 2 x4,

K Draw lines to show the computation for: and in general, that for any integers and s
13
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r+-s=r-s (3) negative if one is positive and the other
T -"S=r+ 8 negative,
We shall now observe a convention that is fol- Furthermore, the absolute value of r- s is |r| -
lowed universally, in view of the last two |s].
equalities. This will remove the need for using 3, In section 6.11 we showed that if multiplica-
the elevated minus sign. We will use “‘-s"' to tion is assumed to be commutative, associative,
mean ~s, and read it as ‘‘additive inverse of ond distributive, then the following must be
i". Y?,’_" we _wri'te “r.-s" we may mean gitl:er properties of (Z, +, °):
me O tai’éﬁée. orr fma S or Tﬂ.B SUtP oT ¢ ana Tl: Coﬂce"oﬁon fol’ oddiﬁcn.
—s because either interpretation gives the same _ _
result. Assuming that we are dealing with in- T2: E.“h. integer has exactly one addi-
tegers, compute: tive inverse
a7 -5 £) (~41) x (=39 T3: Theproduct of a pair of integers is
(a (1 (=41) = (=39) 0 whenever one of the factors is 0.
(b5-7 (g) =3 + (=2 x3) (r-0=0 -r=0 for all integers r)
() =57 (h) (-7 x6) +(~7 x -5) T4: The aodditive inverse of the prod-
()21 x (-19) (i) (<7 x6) + (-7 x =5) uct of two integers is the product
(e) =31 x (29) of either integer and the additive
7 ot mm m inverse of the other. (For all in-
16. In(Z5, -) find 2, =3, ~6. Show that: togers £, 5, ~(r- ) = (-t - s), -
(0072-3=-6 (b2 - -3=-6 (r-s)=(r - -s).
()72 - "3=6 TS: The product of a pair of integers is
*17. Using the distributive property of multiplica- 'h° same as the product of their ad-
tion over addition, prove: (x is an integer) ditive inverses.
i Replacement
(o) 2x + 3x = 5x (d) 2x ~ 5x = -3x In proving these theorems, weused the Rep
Assumption and the assumption that the product of two
(b) 2x + x = 3x (€) 5x - x = 4x positive infegers is a positive integer,
(c) 5x - 2x =3x (f) x - 5% = -4x
18. Solve for x from among the integers: 6.i4 ll?ez:i:w E::ercisos
. Compute:
(0) 2x+3x=20 (f) 2X=3x+20 (o) 9p:_7 ( ) |—23 .9|
(b) 2x+3x=-20 (g) 20 =2x—3x 9.7 (:) 2l . |o|
:2 ::i?i’l Eh; :ixf;:ff 1)< 10 (@=9-77  (i)-47-(17-23)
= - ' X X -
' @ (79 - (77 (i) (39x727) ~(39x~17)

(6) 3x=2x-20 ©9-(=7) (k) (29x~7) +(29x~13)
6.13 Summary h (122 (1) 472 - 482
1. In this chapter we developed and studied mul-
tiplication of integers from various points of

8

2. Find the solution set from the set of integers,

view, The definition of the multiplication oper- (a) < =9 (F) x(x +2) =0
ation was motivated by the desire to extend (b) y2 -1=0 (g)n(n+1)=55
the isomorphism between (W, +) ond (Z, +), to © (~2)x=8 (h)(x+ ])2 =4

maintain pattams previously known to hold for )

mul tiplication in W, and to preserve certain @ 2<5 (i) I":I <10

nice properties of (W, +, -). Multiplication re- (e) x2 == (j)s€="s

ceived further interpretation as a composition 3. Picture on a number line the solution set for

of dilation mappings. Another development (in each exercise in 2.

the exercises) used ordered pairs to define

the product of integers, 4. Answer TRUE (T) or FALSE (F)

(a) Multiplication of integers is both commuta-
tive and associative,

2, For integers r and s, the prod- _tr-s is

(o if.r.or s 's zero: . (b) Multiplication of integers distributes over
(2) positive if both r and s are positive or both addition ana subtraction.

both r and s are negative:
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() Multiplication of integers by =2 always (i)(Z, -) is isomorphic to (D', x).

gives a smaller integer, (i) 1§ oneof the factors of a product of integers

(d) Subtraction of integers is associative. is 0 then the product is 0.

(e) If a product of integers is 0, one of its (k) In (26, .) if a product is 0 then one of the
factors must be 0. factors must be 0.

(f) If a product of integers is negative, then at (1) (“r-s)=(r-=s)

least one of the factors must be negative,

(g) I1f v, s, t are integers and (rs)t < 0 then ror
s or t must be positive,

(h) (Z, -) is isomorphic to (W, -). (o) ~(r+s)="r-s

(m) “res=s-r

n)"r+s=r-s
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CHAPTER7
LATTICE POINTS IN THE PLANE
AND MAPPINGS ON Z X Z

7.1 Points and Ordered Pairs

In a certain North American city the city planners
wanted to devise a numbering system for naming
streets and avenues. They wanted a system that would
make it easy for a visitor to find his way to places in
the city and also a system that would allow them to
add new streets and avenues without changing the
system.

<The avenues were to be parallel to one another
and ‘so were the streets. Each intersection then could
(hopefully) be named by an ordered pair of natural num-
bers by agreeing that the avenue should be named first.

The planners selected an avenue and street that
intersected in the city center. They named the avenue,
100 avenue’’, and the street, “100 street’’, In this
way they felt that there would be sufficient street and
avenue numbers on either side of the center of town to
accommodate growth.,

Question: What problem might arise with the sys-
tem of naming avenues and streets, if
the city should expand more than 99
blocks from the city center in thedirec-
tion of decreasing street numbers or de-
creasing avenue numbers ?

If the city planners could have persuaded the resi-
dents to accept integers as names for avenves ond
streets, the problem would be solved, for the set of in-
tegers has no least or greatest member. No matter how
many new streets might be built at either end of the
city there would always be enough names without
changing the system, Figure 7.1 illustrates such a
system:

The point labeled **(0,0)"" in Figure 7.1 represents
the intersection of zero avenue and zero street. This
is “‘city center.”’ We can name each intersection repre-
sented in Figure 7.1 with an ordered pair of integers.
The first component of the pair names the avenue and
the second the street. For example, intersection A is

named (-2,2).

7.2 Exercises
1. Give the ordered pair of integers for each of

the following intersections represented in Fig-
ure 7.1. In each case list the avenue first and
then the street:

(a) K (b) H
(e) E (f) B

(d) F
(h)D

() G
(9 C

3so+ ¢ '+ * 4- f—

2504 A 4 % 4 ﬁ <
1 St.f ? - r # - X
0S5t qu — 19' 0 -1 QL

T
jé
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z
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pet——+

>
e
4
&
>»
<
4
>
<
®
1
e
>

2. In traveling from intersection F to intersection

C by the shortest route through D:
(a) How many blocks would you travel?

(b) Name the ordered pair for each intersection
on the route,

(c) How could you use the fact thatF is on -2
avenve and D is on 3 avenue to find the dis-
tance in blocks from F to D, considering
that they are on the same street?

(d) Since D and C are on the same avenue, how
can you use the fact that D is on 0 street
and C is on 2 street to find the distance
D to C in blocks?

3. In genenal:

(a) How can you find the distance between two
intersections on the same street?
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(b) How can you find the distance between two
intersections on the same avenue?

7.3 Some Important Properties of Points, Lines and
Planes

The street plan illustrated in Figure 7.1 suggests
many geometric ideas. It suggests two sets of equally
spaced parallel lines so arranged that each line in one
set intersects each line in the other. It also suggests
a correspondence between the intersect points and
ordered pairs of integers. This set of intersection
points will be called a set of lattice points, The set
of all ordered pairs of integers will be calledZ X Z
(read: Z cross Z).

The following properties of points and lines are
useful in establishing a correspondence between Z X Z
and a set of lattice points in a plane,

(1) Through two points, P andQ, (P £ Q)

there is exactly one line.

»
\‘\L‘
£
Figure 7.2

(2) Two lines, r and s, are called intersect-
ing lines, if they have exactly one point
in common.

Figure 7.3

(3) Two lines are parallel if they are the
same line or if they are in the same plane
and have no points in common.

Figure 7.4

(4) Two lines in the same plane are either
parallel or they are intersecting lines.

(5) Through a point P, thereis exactly one
line parallel to a given line m.
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These properties are quite simple, but they are
basic geometric properties which will be applied many
timss. We apply them first to the following problems.

In Figure 7.6, OA ond OB are intersecting lines.
X is a point onm(not the same as Q)and Y is a
point on OB (not the same os 0). Given these condi-
tions on O, X, and Y, is there a unique point Q, so
that OYQX is a parallelogram? |f the answer is yes,
then we have defined an operation on pairs of points
on OA and OB respectively. If wedesignate the oper-
ation by *, then X*Y =Q.

Figure 7.6

7.4 Exercises

1. Use thepicture in Figure 7.6 as a reference
while answering the following questions. The
answers to these questionsmay help you to
justify the fact that * is an operotlon

(a)‘S_y_gpose that XC is parallel to OB and
YD is parallel to “OA. What kind of figure
is OYQX?

(b) Are there any other lines through X which

are parallel to “OB? Are there any other
lines through Y which are parollel to OA?

(c) Whatis the reason that XC and YD must
intersect. In other words, why can’t XC
and YD be parallel?




(d) 1§ XC and YD intersect in Q, do fhey inter.
sect in any other point?

2. In Exercise 1 you answered questions that show

that, for the pair of points X, Y (as specified),
there is one and only oneQ such that X*Y =Q,
Now thequestion is, **Given a point Q (not on
OA or ‘65) is there one and only one pair of
points X, Y such that X*Y = Q?"

Refer to Figure 7.7 and the properties in
7.3 in answering the following guesticns relat:
ed to the one above.

Figure 7.7

Q
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(a) Suppose that r contains Q and is parallel to
‘676.2. Is r the only line through Q which is
parallel to OA? What property justifies your
ansvier?

(b) Suppose that s contains Q andis parallel to
OB. Is s the only parallel to OB which con-
tains Q? Justify your answer,

(c) Does r intersect OB? If r did not intersect
OB, what two lines through O would both be
parallel to r? What property would this con-
tradict?

(d) Does s intersect "OA? Justify your answer,
(e) Canr intersect OB in more than one point?
(f)Can s intersect OA in more than one point?

(g) What conclusion can you draw from your
answers to the preceding questions about
X,Y,Q ond the operation * ?

3. Use properties 1,2, and 3 of section 7.3 to give
an argument in favor of property 4.

4. In Figure 7.3 what is the intersection point of
r and s? Suppose r and s had a second point of
intersection. How can you use property 1 to
show thatr and s are then the same line?

5. In Figure 7.5, a is aline which contains P and
is parallel to m. If b is another line which con-
tains P and b is not the same line as a, what
property can you use to show that b is not paral-
lel tom?
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7.5 Assignment of Ordered Pairs of Integers to Lat-
tice Points

In Figure 7.1 you have an example of an assign-
ment of ordered pairs of integers to intersections of
avenues and streets, This physical example suggests
many geometric ideas and might help to keep your
thinking straight about the mechanics of assigning
numbers to points. In this section we will use the
parallelogram operation, *, and the idea of parallel
srojoction to develop ideas about the correspondence
between Z X Z and an infinite set of lattice points.

Refer to Figure 7.8 as weillustrate and describe
the assignment of an ordered pair of integers to one
particular lattice point. Notice that integers have bheen
assigned to equally spaced points on A and on B0
with zero assigned to © in both assignments. We will
refer to thesepoints by letter names, by the as signed
integers, or simply as points.

Imagine a set of lines each of which is parallel to

BF and intersects ©A in a point which is assignedan

integer. Also imagine a set of lines each of which is
parallel to OA and intersect OB in a point which is
assigned an integer. Since OA and Egintersect, each
line in the set poro.|_|3.I to OA intersects each line in
the set parallel to ©B. These intersections are the
lattice points to which we will assign ordered pairs of
integers.

Figure7.8

You will see in Figure 7.8 that we have assigned
the ordered pair (4,3) to point K. We will call 4 the
first coordinate of ¥ and 3 the second coordinate of K.

BK is parallel to ©A and KA is parallel to 0B.
What kind of a geometric figureis OBKA?

Note that A*B = K, What integer has been assign-
ed to A? to B? How can you use the operation to as-
sign coordinates to latiice points in Figure 8 if the
points are not on A or ©B? What are the coordinates
or R28? T? —

Point K obtained its first coordinate from OA and
its second coordinate from BB, We will call GA the
first axis, or more simply, the x-axis in our coordinate
system and OB the second axis or y-axis. “*(xy)"
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will be used to represent the coordinates of any point
in the set of lattice points, or the point itself.

You can think of the lattice points as being ar-
ranged in *‘rows” and ‘‘columns’’, the ‘‘rows’’ and
“columns’’ being sets of colinear points, i.e. points
in the same line. Assign the same first coordinate to
each point in the same *‘column’’, and assign the same
second coordinate to each point in the same ‘‘row’’.
Then when you assign an integer to a latiice point, X,
on the x.axis, vou assian it as the first coordinate of
every lattice point in the column containing X. Also
when you assign an integer to a lattice point, Y, on
the y-axis you assign it as the second coordinate of
every point in the row containing Y,

Question: What is the first coordinate of every

u—

lattice point on KA?

What is the seco‘nii‘coordinoteof every
lattice point on BK?

The method of assigning the same first coordinate
to each lattice point in a column and the same second
coordinate to each lattice point in a row is illustrated
in Figure 7.9,

)(-J:) <.,L) (-nL) <o|z> (vlz> (23 (2) @3,

it

Figure 7.9
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In Figure 7.9 the lattice points on line r have been
mapped onto the integers assigned to lattice points on
the x-axis. This is an illustration cf parallel projection
of a set of points on a first line onto a set of points on
a second line which is parallel to the first. The idea of
parallel projection plays a role in each of themethods
that we used to assign coordinates to lattice points.
Note that point K is the intersection of line r with the
y-axis and that point K was assigned the integer 2,

Question: Whatis the second coordinate of each
lattice point on line ¢?

What is the first coordinate of each
point on FG?

What is the first coordinate of each
point on HJ?
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Figure 7.10 illustrates some of the terminology
that we will usein the following sections in connection
with coordinates.

second quadrant (-,+) first qnod‘mm (+,+)

Q#Y) 4,
&
3# e
" 24
"
4—0—%~‘D il . c'igi" -0 Hﬂ"
x -3 -2 -1 O 1 2 3 X axis
-4
-2?
. o
k .
y oxis
third quadront (=,=) fourth quadrant (+,—)
Figure 7.10
Figure 7.11, represents a ray. Tha_r_o%includes E,
the endpoint, and all the points of line EF on the “F
side’’ of E. (represented by the solid part of the sketch)

F

-l
vray EF ar EF

Figure 7.11

1.6 Exercises

1. (a) Locate OA in Figure 7.10, Zero has been
assigned to point O. How can you describe
the integers that have been assigned to the
other lattice points on OA?

Note: OA is called, ‘‘the positive x-axis."
(b) What would you call OD? 0B? OC?
(c) Locate the part of Figure 7,10 labeled ‘*first




quadrant.’”’ The points in the first quadrant
have coordinates that are both positive. For
point P in the first quadrent, x > O andy >
0. What con you say about point @ in this
respect? point R? point S?

2. We can say that OA and OB cre the boundar-
ies of the first quadrant, What are the bound-
aries of the second quadrant? the third quad-
rant? the fourth quadrant?

Figure 7,12 illustrates an important fact
about coordinates of points on a line parallel to
one of the axes.

[ ('3f’)
dT‘!z)

22)

Figure 7.12

3. PQ is parallel to the y-axis. What do you notice
about the first coordinates of points on PQ?

4, RSis paraliel to the x-axis. What do you notice
about the second coordinates of points on the
line RS?

5. What two generalizations can you make about
lines parallel to one of the axes?

6. Whot part of our procedure for assigning co-
ordinates built this property into our system?

7.7 Summary of Assignment of Coordinates

The purpose of the sections on assignment of co-
ordinates is:

(1) To give you some idea of the associa-
tior of pairs of integers with lattice
[ A 11

(2) To give you some idea of the geometric
properties upon which this association
depends:

(3) To give you a werking knowledge of the
use of coordinates to aid you in the sub-

sequent study of both algebra and geom-

etry.

A summary of some of the main features of the as-

signment of ordered pairs of integers to lattice points
follows:

(1) We We start with a pair of intersecting lines,
A0 and OB, called cxes;

(2) We assume that thereis a 1 — 1 corres-
pondence between the set of integers
and a set of equally spaced points on
each axis, with zero assigned to the in-
tersection O;

(3) Through each point on‘O_A’ to which an
integer is assigned, there is exactly one
line parallel to‘_ﬁ ond through each
point on OB, to which an integer is as-
signed, there is exactly one line parallel

to ‘OT;

(4) The set of lattice points is precisely the
set of intersections of lines, one of
which is parallel to OA ond the other to
OB as described in (3). Each such pair
of lines intersects in exactly one lattice
point;

(5) On any line parallel to 0B (including OB),
as described above, assign to each lat-
tice point the integer fc for the point in
which it intersects OA. Call this integer

the first coordinate of these lattice points.

R

(6) On any line parallel to OA (including OA), :

as described above, assign to each lat-
tice point the integer for the point in
which it intersects OB. Call this integer
the second coordinate cf these lattice
points.

(7) Because two intersecting lines intersect
in exactly onepoint, and because through
any point there is exactly oneline paral-
lel to a given line, the above assignment
of pairs of integers to lattice points is a
one-to-one correspondence,

7.8 Exercises

For the following exercises you will need some
lattice paper (perhaps your teacher will have a supply
dittoed), some colored pencils, and a ruler. The lat-

tice paper should have at least eleven rows of dots and

eleven columns of dots. Draw a line through a horizon-
tal row of dots for the x-axis and a line through a col-

umn of dots, for example as in Figure 10, for the y-axis. |

Ordinary graph paper can also be used,

1. Draw a line with colored pencil through the sets |
of points that a satisfy the following conditions. :

Use a different color for each condition in ¢
group and a different sheet of lattice paper for
each group:
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Group 1: (a) The first coordinate is equal to the
second coordinate,

(b) The 1st coordinate is the additive inverse
of the second,

Group 2: (c) The sum of the coordinates of the point is
5.

(d) The sum of the coordinates is 3.

(e) The sum of the coordinates is 3.

(f) The sum of the coordinates is -5.

Group 3: (g) The first coordinate minus the second is 2.

(h) The first coordinate minus the second is
~1.

Group 4: (i) The first coordinate equals 2.

(i) The first coordinate equals -2,
(k) The second coordinate equals 4,
(1) The second coordinate equals -4.

Group 5: (m) The absolute values of the coordinates
are equal,

2. For each condition listed in this exercise use
a different color to draw a closed curve enclos-
ing just those points, represented on your
graph or latti ce paper, that satisfy the condi-
tion, e.g.

(a) The first coordinate is less than the second.

(b) The first coordinate is greater than the
second.

(¢) The sum of the coordinates is greater than 5.
(d) The sum of the coordinates is less than -5.
(e) The first coordinate is less than -2,

" (f) The first coordinate is greater than 3,

(9 The second coordinate is less than -4,
(h) The second coordinate is greater than 3..

7.9 Conditions on Z X Z and their Graphs

The set of ordered pairs that satisfies any one of
the conditions in Exercise 1 or 2 in Section 7.3 is
called the solution set of the condition. For example,
the solution set of the condition ‘‘The sum of the co-
ordinatesis five', would include

{(0,5), (1,4), (2,3), (3,2), (4,1), (5,0), 6,-1),
(70 "'2) oo (-106)0 (-207)0 (-308)0 sse }

The set of lattice points associated with these

ordered pairs is called the graph of the solution set,
or sometimes the graph of the condition. The graph of
the above solution set is represented in Figure 7,12
by the circled points in the lattice:

. (0.5) ¢ e 0o 0 0o 0

° @("‘o) o o o o 9
{a.3) 83

°

N . o

°

A™(3,0
* By * O

Figure 7.13

Notice that in Figure 7.12 the graph of the condi-
tion *'The first coordinate is 3 more than the second
coordinate’’ is displayed by enclosing the points in
squares, (Very often it is effective to display the
graphs of different conditions by using different colors
to enclose the points,)

Questions: Which point is enclosed by both a
circle and a square? |s 4+ 1 equal to
5? Is 4 — 1 equal to 3? Does (4,1)
satisfy both conditions?

Part of our study of mathematics is leaming tc ex-
press mathematical ideas in the symbolism of mathe-
matics. You have previously used “x’ to express the
first coordinate of a peint and *‘y’’ to express the
second coordinate of a point,

Therefore, instead of writing ‘' ‘The sum of the co-
ordinates is 5, we can write ‘‘x +y = 5, Instead of
writing * The first coordinate is 3 more than the
second coordinate’’, we can write “‘x =y + 3", If we
are interested in the pair of numbers that satisfies
both of those conditions, we can write, ‘‘x +y =5 and
x =y +3", This new condition is made up of two con-
ditions connected by ‘‘and’’. The solution set is
{(8,1)} and the graph is a set containing only one
point. This point is called the intersection of the two
graphs and {(4,1)} is called the intersection of the two
solution sets. The sentences that we write to repre-
sent conditions areoften called ‘“open sentences’’.

7.10 Exercises
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1. Translate the following conditions to the form
used above, making use of the symbols “'x"’,

y”?, ‘=, etc,.

(a) The first coordinate is equal to the second
coordinate, (Ans. x =y)




(b) The first coordinate is the additive inverse
of the second coordinate. (Ans. x = -y)

(c) The sum of the coordinates is three.
(d) The sum of the coordinates is -3.
(e) The sum of the coordinates is -5.

(f) The differenceof the first and second co-
ordinates (in that order) is 2.

(g) The difference of the first ond second co-
ordinates is -1.

(h) The first coordinate equals 2,
(i) The first coordinate equals -2,
(i) The second coordinate equals 4.

(k) The absolute valuesof the coordinates are
equal.

2. Draw the graphs for the open sentences you
wrote in Exercise 1.

3. Translate the following back into words: (in
terms of coordinates)

(a) x+6 =y
(by-x=3
() y = |x]
(dy=x-2
() y =|x - 3]
(f) x=7
(@y=1

4, Using **>'* for ‘‘greater than’’ and "' <"’ for
“|ess than”, translate the sentences of Sec-
tion 7.7 Exercise 2 into mathematical symbols.

5. Translate the following into mathematical
symbols:

(a) The second coordinate is the product of 2
and the first coordinate.

(b) The first coordinateis the product of 2 and
the second coordinate,

(c) The second coordinate is the product of 3
and the first coordinate,

(d) The first coordinateis the product of 3 and
the second cocrdinate.

6. Describe the following conditions in words:
()y=5x ()y=+2 (e)y<0 (g x-y=6
(b)x=5y (dy=0 (x>0 (h)2x=3y.

7. For each of the conditions in Exercise 6, list
four membersof Z X Z that satisfy the condi-
tion. For example, (1,5), {- 10), (-1, -5) and
(0,0) are four members of . X Z that satisfy 6
(a).

8. Use the same piece of lattice paper to graph
each of the following conditions. Use a differ-

ent color for each condition to circle the points
that satisfy the condition.

(a) y = x (c) x=2
(b)y =2x (d x=0

9. Whatis the intersection (common point) of the
oraphs in Exercise 87 Which graph was includ-
ed in the x-axis ? the y-axis? Which of the

graphs were contained in a line other than an
axis?

(e)y =0

10. Translate the followinginto mathematical sym-

bols:

(a) The second coordinate is 1 more than twice
the first coordinate,

(b) The first coordinate is 5 less than 3 times
the second coordinate.

11. Describe the following conditions in words.
() y=x+1 ()y=x+2
(by =x-1 (dy=x-2

12. For each condition in Exercise 11, draw a line
through the points that satisfy the condition.

Use the same piece of lattice paper for all
lines.

13. In what way were the four lines in Exercise 12
alike? List the coordinates of the points in
which the lines intersected the y-axis. Note
the similarity between these coordinates and
the conditions as expressed in Exercise 11,

7.11 Intersections and Unions of Solution Sets

All of the points satisfying the condition x > 0
are located on the same side of the y-axis, We will
designate this side of the y-axis by ‘A", The set of
points satisfying the conditiony > O are located on
the same side of the x-axis, Call this set B,

Two conditions joined by a_connective such as
““‘and"’ is one example of a compound condition. The
set of points which satisfy the compound condition,
x> 0 andy > 0" is the set containing these
points that satisfy both *‘x> 0’ and "'y > 0" This
set is the intersection of A and B. A point is in the
intersection of two sets only when it is in both sets.
Figure 7.14 illustrates the relationship of sets A, B
and A intersection B (often written AN B).

y axis
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Figure 7.14
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Pcints in A are in circles, (x > 0)

Points in B are in squares. (y > 0)

Points in A B are in circles and squares,
(x>0andy > 0)

Let C be the set of points for ‘‘x < 0'’,
Let D be the sot of points for *‘y < 0*'.

lllustrate C, D and CND in a diagram such
as Figure 14,

Repeat the preceding instructions for A and
D: Band C,

Which quadrant contains A NB? CND?
AnD? BNC?

List the coordinates for two points in AN B:
cnD: AnD: BNC,

All of the points satisfying the condition *'x = 0"
areon the y-axis, Call the set of all such points E.
The solution set of the compound condition “‘x> 0 or
x = © * contains those ‘‘points’’ which satisfy either
“x . " or'x=0" or both. This setis the union of
A and E, written AUE, Figure 7.15 illustrates this
set relationship:

Figure 7.15

Points in A are enclosed by circles.(x> 0)
Points in E are enclosed by squares. (x =0)
Points in AU E are enclosed. (x> 0 or x

= 0)

A simpler notation for ““x > 0 or x = 0" is:
“x2> 0" and is read,

“x is greater than or equal to zero.”’

7.12 Exercises
1. Describe (in terms of the axes and quadrants)
the location of the points that satisfy the fol-
lowing conditions:

(a)y=0 and x> 0. Ans. On the x-axis to the
right of the origin,

(b)y > 0 and x < 0. Ans. On the x-axis to the
left of the origin
ond in the second
quadrant,

() y < 0.

(d)y <0 andx <0,
()y<0 or x<0,
(f) x2 0 and x < 0,

2. In this exercise try to locate the points in the
graph of the compound conditions without first
graphing each simple condition separately. Do
all parts of this exercise on one sheet of lattice

paper.
() x> 0ond x =y.
(b) x< 0and x = -y.
() (x>0 andx=y)or(x <0 and x = -y)
3, Follow the instructions of Exercise 2:
(@) x> -landy =x+ 1.
() x< -laondy = ~(x +1)
() (x> -landy =x+1)or(x< -1andy =
=(x +1))
4, (a) (x20ondy> 0and x +y =5)
()(x<0andy2 Gandy - x=5)
() (x> 0andy> Oand x+y =5)or(x<0
andy>0Oandy - x= )
5.(@) (x<0gndy < Oand x+y = -3)
(b)(x20aondy <0and x -y =9)
() (x<0andy<Oandx+y=-5)or(x20
andy <0 andx-y=35)
6. (0) y> xandy <x+3
(byy<xondy2 x-3
() ly> xandy < x+3)or(y<xandy2 x -3)

7.13 Absolute Value Conditions

In chapters 4 and 6 you thought of the absolute
value of an integer as a whole number. This made it
possible to make use of the properties of the whole
numbers while developing properties of addition and
multiplication of integers. Youleamed in those chapters
that the set of whole numbers is isomorphic with re-
spect to *‘+’ and **+** to the set of non-negative in-
tegers. This means that they ‘behava” the same in
addition and multiplication. In working with conditions .
involving absolute value in Z X Z where the solutions
are ordered pairs of integers, (x,v), we will think of
the absol ute value of an integer as a non-negative in-
teger as defined by the statements below:

(a) The absolute value of zero is zero.

(b) The absolute value of a positive integer is
that positive integer,

(c) The absolute value of a negative integer is
the additive inverse of that negative integer,

This covers all possibilities since x =0, x> 0
or x < 0, if x is an integer,




A more compact definition is:
[x,ifx2>0
|x|= 1% ifx>0
For example:
I§x=5, |x| = 5since 5> 0:
I§x=0,|x|=0 since0=0:
If x = -3, |x| =3 since 3< 0 and {-3) = 3.

Suppose |x| = 3.

From the definition |x|= x or |x| = —x, therefore,
substituting 3 for |x/|, in the line above,

3=x0r3==x

You see that we started with |x| = 3 and found
as a result the compound condition *'x =3 or

x = =3", The solution set of this condition is
the union of the solution sets of the two simple
conditions,

On a line this solution set is simply a pair
of points. In the set of lattice points, however,
a more interesting situation develops. In Fig-
ure 7.16 the points for which x =3 or x = =3
are circled,
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Figure 7.16

Furthermore, suppose ly| =2, heny =2 ory = -2,

In Figure 16 the points for which the second coordin-
ates are 2 or =2 are enclosed in squares. In what way
is the graph of |x| =3 and |y| = 2 indicated?

7.14 Exercises
1. What are the following?

(@) [-7] (B 151 (@ [0 () [-1] (o) 9991,
2. Graph the following on the same lattice.

(@) [x|=4 (&) Ix|=4andly|=1.

B lyl=1 (@ [x|=40rly|=1

(e) Describe how the graphs in (c) and (d) are
determined by the graphs in (a) and (b).
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3. Draw the graph ofy =|x|. Remember that if
x>0,y =xand ifx< 0,y =-x x> 0simply
states that the points are to the right of the
y-axis or on the y-axis, x < 0 states that the
points are to the left of the y-uxis,

4, Draw the graph of y - |+ 1] =0, (ie. y =
|x+l|)

Hint: .
o, Jxal,ifx2 -1
e +11=7 (x4 1), ifx < -1

Also see Exercise 3 seciion 7.12.
5. Graph the following:

(a)y =2 |x] (To the rightof the y-axis,
this becomes y = 2x: to the
left, y = -2x)

(by =3 |x|
(Qy =2 |x|
6. Graph the following:

(a)y = x|+ 1 (Why can you think of this
as the graph of y = ix|
tran slated one space away
from the x-axis?)

(by =|x|-2

7. Graph x|+ ]yl =5.

7.15 Lattice Point Games

1. The Game of Caricatures
It is interesting to see what happens to a
graph or picture when you change the angle at
which the x-axis and y-axis intersect, For ex-
ample see what happens to ‘‘square-head’’
when you change the angle of the axes:
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Figure 7.17
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What do you think would happen to a circle if
you draw it on one grid and then transfer it to

_ another by connecting points with the same co-
ordinates?

Transfer the ‘‘man in the moon"’, pictured in
Figure 7.18, to another grid with the axes at a
considerably different angle, e.g. X. Use the
coordinates of points on the picture to make the
transfer,

Figure 7.18

Remember that when you find the second coor-
dinate you have to count the points along o
t'slanted”’ line. Coordinates for the '‘man ir: the
moon'’:

Head: (-2,4) (2,2) (4,-2) (3,-4) (1,-4)
(-2,-2) (-4,2)

Eyes: (-2,2) (0,2)

Nose: (0,0)

Mouth: (-1,-1) (1,-2) (2,-1)
Left Ear: (-4,2) (-5,2) (-4,1)
Right Ear: (2,2) (3,2) (3,1)

To play the game of caricatures:

a) One student draws a picture on a arid of
his choosing and without showing the pic-
ture supplies only the coordinates of key
points in the picture,

b) The other students on self-made grids,
using any desired angle for the axes, plot
the coordinates on their own grid and
sketch in the picture.

. Operational Checkers (Optional)

This game is played by two players on a finite
set of lattice points. For example:
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(0.2) 1,2 (2.2)

(0,1) (L1 @)

(0,0) (1.0 (2,0
Figure 7.19

You will need to use the arithmetic of (23, +) so
we will list the necessary facts: 0 +0 =0:0 +1 =1:
0+2=2:14+1:=2:142=0:2+2=1: ond the com-
mutative property will provide the other basic facts.

1) One player has red checkers and the oth-
er has black checkers, A coin is tossed
to determine who starts.

2) The first player places a chackeron any
point that he wishes:

3) The secondplayer may then placea check-
er on any uncovered point and another
point with coordinates obtained by adding
the corresponding coordinates of the last
two points covered. The addition to be
used is that for (Z3, +).

4) On each subsequent play, if the players
opponent has just placed a checker on
(c,d), then the player may not only cover
any uncovered point (a,b) but also (a + ¢,
b +d). 1" ~oint is already covered by
his oppuienr, the player replaces it with
one of his own. For example, if one play-
er has just covered (2,1), the other play-
ermay cover (2,2) and also (2 +2, 1 + 2)
which is (1,0).

5) The game ends when all points are cov-
ered. The winner is the player with the
most points covered. As you play the
game you will see that it involves several
interesting strategies.

7.16 Sets of Lattice Points and Mappings of Z into Z, -

You are familiar with many types of mappings from
Chapter 3. An important use of lattice points is the
representation of mappings of Z into Z,

The diagram below displays some of the assign-
ments made by f; x———=2x where xis a member of Z.

DOﬂlOiﬂ {.gou "3 -2 -l 0 l 2 3 o.o}
R
Range {...-6 -4 -2 024 §eee}
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The pairs associated by the mapping can al so be
displayed as a subset of Z X Z,

{ LR N (-30 "6)0 ("20 "4)0 ("]o "'2)0 (000)0 (] 02)1 (21 4)0

(3,6), o0 }
This subset can be graphed:

Figure 7.20

In this particular mapping we see that (x,y) —
(x,2x) or thaty = 2x. The arrow from 3 on the x-axis to
the point (3,6) and the arrow from the point (3,6) to the
point 6 on the y-axis illustrate a geometric method of
using the graph to find the integet on the y-axis as-
signed to a particular integer selected from the x-axis.

Select some other integers from the domain of the
mapping illustrated in Figure 7,20 and trace the path
from the related point on the x-axis to the point in the

graph and then over to the corresponding members of the

range on the y-axis.

Which axis contains the graph of the domain of a
mapping?

Which axis contains the graph of the range of a
mapping?

There is also an algebraic method of finding the
image of an integer in the domain of a mapping which
is very valuable in graphing.

Example: Graph the mapping which assignsy in
the range to x in the domain under the
condition xy = 12,
(1) Select an integer from the domain,
say 2.
(2) Substitute 2 for x in xy = 12; then
2y = 12,

(3) I1£2y =12, theny =6.
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(4) We see that 2 maps onto 6 and (2,6) is
in the graph.

In this manner we can find other pairs and record
them in a table:

Range
2 6
3 4
4
6
-2
-3
-4

Domain

Figure 7.21
Copy and complete the above table. Draw axes on
a piece of graph paper and circle the pointsobtained
from the table,

7.17 Exercises

1. Make a table like that in Figure 7.21 for each
of the following open sentences:

(@) y=-» )y =2x -1
(B)y=2x+1 (e) If x is even, y -9 and
(c)y:x2+‘| if xisodd,y =1.

2. Use the tables that you constructed in E xer-
cise 1 to circle the points in the graph of each
condition. Use graph paper andmake a separ-
ate pair of axes for each graph.

7.18 Lattice points forZ X Z X Z
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If Z represents the set of integers, and Z X Z
represents the set of all ordered pairs of integers,
what do you think Z X Z X Z represents?

You have seen that Z may be associated with a
set of points on a line and that Z X Z may be associ-
ated with a set of points in a plane. The set of all
ordered triples of integers may be associated with a
set of points in space (3-dimensional).

Suppose that you wish to meet a friend in an of-
fice building on the corner of some avenue and street.
You not only need to know the number of the street
and the number of the avenue, but also the number of
the floor in the office building.

The longitude and latitude of an airplane at any
instant is not sufficient to determine its position. You
also need to know its altitude.

Although two directed numbers are sufficient to
get you to the point beneath which the treasure is
buried, you don’t know where the treasure i s until you
know how deeply it is buried,

In each of the three examples above, it is neces-
sary to have atriple of numbers to locate an object

30 Aoty o ANl T
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. in space. In a corresponding way, we associate each

" point in a three-dimensicnal set of lattice points with
. an ordered triple of integers, In this case we have
three axes instead of two and each point has three co-
- ordinates.

: Figure 7.22 illustrates the assianment of coordin-
. ates fo certain points in space. Study the diagram ond
. see if you can discover how each triple, (x,y,z), was

: assigned,

Figure 7.22

The geometric figure with vertices OABCDEFG
has six faces each of which is a parallelogram. it is
called a parallelepiped.

7.19 Exercises

1. (o) Name the six faces of the parallelepiped
using the letters that name the vertices.

(b) How many of the parallelograms have O as
a vertex?

(¢) Try to draw the parallelepiped that has O as
a vertex for three of its faces and has the
point (2,3,4) as the other end of the diagon-
al from O,

2. (a) Using three pieces of cardboard, try to con-
struct -odel of three planes so that any
pair of planes has a line in common, but all
three have only one point in common.

7.20 Translations inZ X Z

In earlier chapters you leamed about translations
as a special kind of mapping. You also learned t-at
the set of translations in a line, as represented by di-
rected numbers, with the operation ‘‘followed by’’ has
the properties of a commutative group.

In this chiapter we will be chiefly interested in
translations of o set of lattice points into itself in
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terms of coordinates,

We will designate the image of point P in a map-
ping by ‘P’ "' (read: p-prime). If the coordinates of P
are (x,y), then the coordinates of P’ are (x',y’).

Translations ‘ ‘move’’ every point in the lattice the
same distance in the same direction.

S A
TEHT B

Figure 7.23

The diagram in figure 7.23 shows the effect of a
cerfain translation on four points:

(-4,-1) - (-3,1)
(-1,-3) - (0,-1)
(5-1) - (6,1)
(3 0 - (4,3)

Questions: In each case, by how much did the 1st
coordinate increase?

By how much did the second coordin-
ate increase?

What is the image of the following
points in the same translation?
(@) (2,3) (b)(6,-2) (<) (~1,2) (d)(0,0)
The above translation may bedefined by:
(x,y) (x+1,y+42) orly T]’2.

This indicates that the translation adds 1 to the first
coordinate of each point and 2 to the second coordinate.

Any translation of Z X Z may be designated by the
form:

(x+a,y +b)

(xy) orby Top

where a and b are any integers,

What would be the effect of the translation TO,O?

Since TO,O or (x,y)——= (x+0,y+0) maps every point

onto itself it is called theidentity translation,

You are familiar with the composition of mappings.
In connection with translations of a set of lattice points
the composition of To,b with Tc,d can be expressed as:

To,b ° Tc,d = Tc+o,d+b

The symbol ‘0’ in the definition above can be




read ‘with’' or “‘following" since the translation on
the right of the sign translates first. The effect of the
above composition of translations on a point (x,y) is:

(x,y) = (x+c+0, y+d+b)

If you placed a disk on a lattice point, the compo-
sition T2'3 o T_.4'_| would tell you to first move
the disk 4 points to the ieft and 1 down and follow this
2 to the right and 3up. Since Ty 3 o T4 o =
T 2.2 this should be tho same as moving 2 to the ieft

and?2 up. Figure 7.24 illustrates this by showing the
effect on (0,0):

Figure 7.24

7.21 Exercises

1. Find the composites of the followingpairs of
translations:

(@) T53 0 Ts5 3
() Tap o T, b

If the composite of two translations is the iden-
tity translation, each is called the inverse of the

other.

2, Use the commutative property for addition of in-
tegers to show that Ta,b ) Tc,d = Tc,d °
Ta, b

3. What property does Exercise 2 demonstrate for
composition of tronslations?

4, Use a property of integers to show the following:
Tab© (Ted © Ted =(Tap © Te,d © Tof

5, What property of composition of translations is
demonstrated in Exercise 4?

6. Draw the following parallelogram on graph paper:

(-3, -1), (013)0 (703)1 (4,-1)

7. Verify with a ruler that the midpoint of the di-
agonals of the parallelogram in Exercise 6 is
(2,1). -

8. Find the images of the points on the parallelo-

(B) Ty, 0 Ty

AT INTA SN, S I
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gram in Exercise 6 under the translation T_o _y,
that is map each (x,y) onto (x-2,y-1).

9. Do the image points you found in Exercise 8
form another parallelogram?

10. Verify with a ruler that the midpoint of the im
age parallelogram’s diagonals is the image of
the midpoint of the diagonals of the paralielo-

gram in Exercise 4.

ii. is ihe image paraiieiogram of i

ercise the same size and shape a
which it is the image?

When we say that a mapping preserves some prop-
erty, we mean that if a set of points has that property,
the image also has that property.

12. On the basis of the translation that you experi-
mented with in the previous exercises, would
you say that translation preserves:

(c) Midpoints?

(d) Lines?

.
.
previcus ex-

the one of

(a) Size and shape?
(b) Parallelism?

7.22 Dilations in Z X Z

Figure 7.25 shows graphically what happens to a
set of points under dilation:

A dilation of Z X Z is a mapping designated by:
or D;, for any non-zero

(%,y)—— (ax,ay)
integer a.
if ais less than zero this is sometimes called a dila-
tion with point symmetry in the origin,

In the dilation of the above picture a =2 or Dy
maps (x,y) onto (2x,2y). An equivalent way to say this
is that distances between pairs of points in the image
are twice as great as the distances between the corres-
ponding pairs of points in the first picture, If the dila-
tion had been D_o, the image wouldhave been the same
size but would have been upside down in the third quad- :
rant with his nose still against the y-axis but 6 units
below the origin.

Exercise: Dilate the original picture by a factor

of ~2. Then the mapping is (x,y)
(-2x,-2y).

You will see him increase in size and
stand on his head!

In any dilation both coordinates of each point are
multipliad by the same number. We will refer to this
number as ‘‘a’’ in the following questions:

(a) What happens to points in a dilation ifa=1?

(b) What happens to points in a dilation ifa=
-1?

(c) If we should aliow a to be zero, onto which ;
point would each point map?

(d) What happens to each point in a set of points
ifa=3?-3? 3
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: Figure 7.25

(e) If a picture is in the 2nd quadrant, where
will the image be under Dy? D_o?

(f) Where will any point on the x-axis be mapped
by ony dilation of the form (x,y)—e-(ax,ay)?
Where will a point on the y-axis be mapped?

7.23 Exercises

1. Use the dilation Dy to graph the following points
and their images:

(=3,-h 0,3) (7,3) (4, -1

2. Answer the following questions about the figure
in Exercise 1 and its image:

(a) What kind of geometric figure is the original
figure?

(b) Is the image the same size as the original?
Shape?

(c) Are the lines in the image parallel to the
lines in the original?

(d) Are midpoints preserved by dilation in this

case?
3. The composition of dilations may be represent.
ed as '
Dp o Dy = Dgp whers Dy dilates first,

(a) Which dilation maps every point onto itself?

(b) Is composition of dilations commutative?
Associative?

(c) Which two dilations are the only ones that
have inverses inZ X Z?

7.24 Some Additional MappingsinZ XZ

129

By now you should have some skill in finding im-
ages if you are given a point (coordinates) and a rule
for finding the image. For each of the mappings below,
find theimages of the following points which determine
a parallelogram and the midpoint of its diagonals. Then
ansver questions (a)~—(g).

Parallelogram (-3,-1), (0,3), (7,3), (4,-1)
Midpoint of diagonals (2,1)

(a) First use graph paper to graph the figure
and its image.

(b) Is the image another parallelogram?

(¢) Is theimage of the midpoint the midpoint in
the image parallelogram?

(d) Does the image have the shape of the orig-
inal? The size?

(e) If the vertices of the parallelogram are
named ABCD clockwise in that order are A’
B’,C’, D’ also in clockwise order?

(f) For each mapping try a special case of com-
position with a mapping of the same kind.

(9) Try composing pairs of mappings of differ-
ent kinds,

Mappings:
(1) (x,y)———e(x,-y)
2) (¢y)——=(-xy)
@) (x,y)——s(y,¥)
(4) (x,y)——(y,-x)
() (%, y)———r(x+3,-y)
(6) (x,y)——>(x+2y,y)

7.25 Summary

1. The assignment of ordered pairs of integers to
lattice points in a plane involves:




(a) Assignment of integers to equally spaced
points on each of two intersecting lines
called axes;

(b) Parallel projection to assign pairs of integers,
one from each axis, to lattice points in the
plane of the axes;

(c) Geometric properties of parallel lines and in-
tersecting lines to show that the assignment
in {b) is  one-to-onie correspondence,

2. The set of ail ordered pairs of integers is named

Z X Z, ond the two integers assigned to a point

are called coordinates of the point.

3. Conditions for coordinates of a point, such as,
*the sum of the coordinates is 3'’, are expressed
by open sentences, such as “‘x +y = 3. The set
of ordered pairs, each of which satisfies the con-
dition, is called the solution set of the condition
(or the open sentence). The set of lattice points,
that have these pairs for coordinates, is the
graph of the condition.

4. Compound conditions may be expressed by con-
necting two open sentences with “‘and’’. The
connective “‘or’’ con also be used. A pair of in-
tegers satisfies an ‘‘and’’ condition, if it satis-
fies both connected conditions and satisfies an
“or'" condition, if it satisfies either,

5. The absolute value of an integer is defined:
|x|= x, ifx20
|%|= -x, ifx<0

6. The idea of a coordinate system in a plane may

be extended to space by assigning number triples
to points.

7. Translations of Z X Z are expressed by:

(x,y)——=(x+a, y+b), where a ond
b are integers,

8. Dilations of Z X Z are expressed by:

(x,y) =———s-(ax,ay), where ais a
non-zero integer,
9. All of the mappings of Z X Z presented in this
chapter preserve lines, parallels, and midpoints.

7.26 Review Exercises
“: 1. List five ordered pairs of integers that satisfy

the condition:
I () x+2y=5 (hx=2 (c)y=I|x|-2
(d) |x| + Iy} =3 (e) xy =24
2. Translate the following conditions into open
sentences:

(a) Two times the first coordinate minus three
times the second coordinate is equal to
seven,

(b) The first coordinate is three less that two
times the absolute value of the second co-
ordinate,

(c) The first coordinate is greater than zero
and the second coordinete is less than two.

3. Translate the followingopen sentences into
words:

(@ y=x -2 (5Ix+yl=5 (c)y>20rx<3.
4. Tabulate the solution set of the foliowing’

(a) x+y=5and x—y=3 (b y=»% and x=-1.
5. Graph the following:

(0) y=2x-1 (b y=-3x (c)x>0andy=0.

6. Which quadrant or quadrants contain the points
whose coordinates satisfy the following:

() x=2andy >0 (b) (x,y) is not on either

(c) y<-5and x< -6 axis.
() x=-10andy =23

7. Draw a pair of axes on a piece of graph paper
and circle the following points:

(6,11) (6,1) (11,6) (1,6) (9,10) (3,10) (3,2)
9,2) (10,9) (10,3) (2,3) (2,9

8. Find the image of each point in Exercise 7 for
the following mappings and circle the image
points

(@) (x,y)——=(%,-y)  (€) (x,y)=——>(-x,-y)
(b) (%,y) ——mee(-%,y)  (d) {x,y)——(y,%)

9. Find the image of the following triangle and
draw the image triangle on a piece of graph
paper for each of the following mappings:

(0,0), (0,5, (2,0), -;
(@) (x,y)——=(2%,2y) (b} (x,y)——(~2%-2y) }
(€) (x,y)———=(=2%,2y) (d) (x,y)-—(2%,-2y) :

10. Find the image of the paral lelogram, (0,0) 0,3)
(4,3) (4,0), for each of the following mappings
and draw the image on a piece of graph paper:

(a) (x,y)—=(x+3,y+4) (b} (x,y)—=(x+2y,y)
(C) (xIY)_.(x+5l "'Y) (d) (XIY)—.(XIO)
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CHAPTERS8 SETS AND RELATIONS

8.1 Sets

Our everyday speech abounds with collective
nouns such as herd, company, swam, ciass, litiei, col-
lection, bunch, etc. Examples which use these collec-
tive nouns would include the following: a herd of
cattle, a company of soldiers, a swarm of bees, a class
of students, a litter of kittens, ¢ collection of stamps,
a bunch of bananas.

It is also possible to find examples which use col-
lective nouns which may be unfamiliar to you such as
the following: a gam of whales, a pod of seals, a glit-
ter of butterflies, a singular of boars, a gaggle of
geese, ahutch of rabbits, an army of ants, a murmura-
tion of starlings, a jubilation of skylarks, and a pride
of lions.

In each of the above examples we see how a word,
such as herd, class, pride, etc., is used to denote a
collection of several objects assembled together and
thought of as a unit. Each of the above collections is
said to be well-defined. By this wemean that we can
determine if a given object does or does not belong to
the specific collection being considered.

" In mathematics we use the collective noun set
to indicate any well-defined collection. The objects in
sets can be literally anything: numbers, points, lines,
people, letters, cities, etc.. These objects in sets are
called the elements or members of the set, Terms such
as “‘set’ and “‘element’’ are part of the basic language
used in the study of all branches of mathematics. Thus,
in this chapter, we will concentrate on terms and con-
cepts dealing with sets and relations between sets.

Let us list ten particular examples of sets.
Example 1: The numbers 1, 2, 3, 4, 5, and 6.

Example 2: The solution set of the open sentence
2+5=xin(VW, +).

The vowels in the English alphabet:
a, e i,o andu,

The states in the U.S.A. whose names
begin with the letter ‘‘M"’.

The numbers 1, 2, 3, 4, 6, 8, 12, and
24,

The states in the U.S.A. for which the

names of both the state and its capital
city begin with the same letter.

The numbers -2, =1, 0, 1, and 2.

The set of whole nuinbers which are
both even and odd.

Example 3:
Example 4:
Example 5:
Example 6:

Example 7:
Example 8:
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Example 9: The numbers 1, 3, and 5.
Example 10: The outcome set for the tossing of o

die,

Notice that the sets in the odd numbered examples
above are defined by actually listing the elements in
the set; and the sets in the even numbered examples
are defined by stating properties which can be used
to determine if a particular object is or is not an ele-
ment of the set.

Sets will usually be denoted by capital letters,

A B X, Y...

Recall that weused “W" to denote the set of whole
numbers and *“Z" to denote the setof integers. The
elements in sets will usually be denoted by lower
case |etters

b, Yo o o o

There are essentially two ways to specify a particul-
ar set. One way, if it is possible, is to actually list
the siemsnts in a set. For example,

A={0, 1, 2 3}

denotes the set A whose elements are tha whole num-
bers 0, 1, 2, and 3. Note that the elements are separat-
ed by commas and enclosed in braces { } « The sec-
ond way to specify a set is by stating those properties
which determine or characterize the elements in the
set. For example,

A ={ x: x is awhole number, x <4 }

which is read, “A is the setof all x such that x is a
whole number and x is less than 4.

a, X,

Note: A letter, here x, is used to denote an ar-
bitrary elementof the set; the colon “r s
read as ‘' such that'’; the comma is read as

“md.ll

If an object x is an element of a set A,ie., A
contains x as one of its elements, then we write

x€A

This can also be read **xis a member of A", or “‘x is
in A", or “x belongs to A", To indicate that “‘x is
not an element of set A’’ we write

x§ A,
Thus, in the set A given above wehave
0CA, 1€A, 2€A, 3EA, and 4§ A,

Let us rewrite the Examples 1,10 given earlier in
order 1o illustrate the above remarks and notation. We
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shall denote the sets by A], AZ' A3, .o
tively.

Example 1’: A] ={1,2,3,4,5,6}
A2 ={x:x=2+5 xEW}
A3 = {d, O, i, 0, u}

. Alo respec-

Example 2’ :
Example 3':

Example 4': Ag = {x: xis a state beginning with

the letter “‘M"’}
;A5 ={1,2,3, 4. 6,8, 12,24}

A6 = {x: xis a state whese firs?
letter is the same as the first
letter of its capitol city}

Ay =1{-2,-1,0,1, 2}
Example 8’ : Ag = {x: xEW, x is even, x is odd }
Example 9/: Ag = {1, 3, 5}

Example 10':Aqg={x : x is an cutcomeof a toss
of a die}

Example 5°

Example 6’ :

Example 7' :

8.2 Exercises

1. Can you {nd the eight elements in the A4?
2. Can you find the four elements in the set As?

3. What relationship exists between the sets A,
and Alo?

4, What relationship exists between thesets Ag
and A]?

5. List the elements in the sets
a) Ay
b) Ag

6. Can you denote the following sets by stating a
property which determines or characterizes the
elements in the set?

O) As
b Ay
C) A9

7. List four essentially different sets that you
have studied in previous chapters in this book.

8. What special name do we give to the set de-
fined in Example 8' above?

9. Explain why or why not the following are true.
d) 7€ A]O
b) Delaware is an element of set A6
c)0€ A8
d) x ¢ Aq ,

10. Can you state a property thatis true of all the
sets A] - Alo?

8.3 Set Equality; Subsets
LetA ={0, 1,2, 3}

andB ={1,0, 3, 2}

ERIC
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If we examine the above we find that both sets A
and B contain precisely the same elements although
they are not listed in the same order. The sameness
between the two sets A and B we will indicate by
writing

A=B

and which we read as “‘set Ais equal to set B",
Equality between two sets means that the two sets
contain precisely the same elements and that we do
not have two sets but only one.

In general, if A denotes a set, and B denctes a
set, then for sets A and B, the statement

A=B

means that A and B dencte the same set, If sets A
and B are not equal then we shall write

A £B,

Example 1: 1F X = {0, 1}and Y ={x : x EW, x <
. 2}, then wehave that X =Y

Example 2: If V = {a, e, i, 0, v} and ¥ = {u, e,
a, o, i}, then V =Y Note that the
order in which the elements are list-
ed is immaterial

Example 3: 1f V = {a, e, i, 0, u} and
X = {x: xis a letter in the english

alphabet } then we have that
vV AX

In Example 3 above we notice that there is a re-
lationship, other than equality, between sets V and X.
It is clear that every element of set V is alsoan ele-
ment of set X. We say that set V is a subset of set X
or that set V is contained in set X, We denote the re-
lation “is a subset of’’ by the symbol “ c*’. Thus,
in Example 3, VC X. -

Definition: Set A is called a subset of set B, de-
noted by A C B, if andonly if the sets
A and B have the property that every
element of set A is an element of set

Bo

Notice that the above definition means that if AC B
and xE A, then x€B,
Example }:: Let A= {1},B={0,1,2},C =
{3, 4,5,6}, andD=1{0,1, 2, 3,4, 5}
Then we see that
ACB BCD ACD.

Note that C is not a subset of D be-

cause 6 €C but 6 £D. ‘
Example 2: Let X = {a, b, c}and Y = {c, q, b}.

We see that X C Y because every

element of X is an element of Y,
Furthermore Y C X.

Notice in Example 1 why C is not a subset of D, It
illustrates the following general remark:




Remark 1: If set A is riot a subset of set B, then
set A contains at leastone element
that is not contained in set B,

Notice also that Example 2 shows that A C B does not
exclude the possibilitythat A = B, In fact, we can make
the following general remark conceming how equality
of sets is related to the ideaof subset:

Remark 2: Two sets A and B are equal if and only
if AC Band BC A,

. H l.... e A o - molbnonsmm - A, vy ]
Let us i}lusiraie the cbove siatement:

IFA={0,1,23}andB = {1, 0, 3,2} then
clearly A C B because avery element in set Ais also
an element in set B, Also B C A because every ele-

ment in set B is also an element in set A, Thus, we
conclude that A =B,

From the above we see that every set has at least
one subset, namely, itself. In fact, we can make the
following general remark:

Remark 3: If A is any set, then A C A,

We can examine a given set to see what subsets it con-
tains. For example, what subsets are contained in the
set A = {a, b}? From the above remark we see that A
contains itself as a subset, Thus {0, b} C A, or equiv-
alently, {q, b} € {a, b}, Also it is clear that set A
contains two subsets each of which contains a single
element, That is

{a} S Aand {b} C A,

Next let us consider the empty set as a possible
subset of A. We are asking if

@ C A, or equivalently, if { Y& {a,b} ?

If we assume that @ is not a subset of A, then Remark
1, given earlier, implies that @ contains at least one
element that is not an element of A, But @ contains no
such element since by definition @ contains no ele-
ments. Thus we cannot say that @ is not a subset of

A, i.e., @is a subset of A, Since the above argument
would apply to any set A, we make the following remark:

Remark 4: £ A is any set, then @ C A,

Note that the set A = {a, b} contains exactly four sub-
sels, namely {a}, {b}, {a,b}and@.

Of these four subsets of A we shall say that {a}, {b},
and @ are proper subsetsof A and that {a, b} is not a
proper subset of A. Note that proper subsets of a set
do not contain all the elements of the given set, In
general we have the following definition:

Definition: A is a proper subset of B, denoted by
A C B, ifandonly if A C Band
A £B.
“A C B" is read ‘A is a proper subsetof B'’ or “A
is properly contained in B,"’

Example 1: Let K = {=1,0, 1}, Then {-1}, {0},
{1}, {-1, 0} are each proper subsets

of K. 133

Note {-1,0, 1} is a subset of K but
not a proper subset of K,

Example 2: Let X be any set except the empty set.
Then, because we know that@ C X
by Remark 4 and because we are given

that @ £ X, we conclude that @ is o
proper subset of X, that is @ C X,

8.4 Exercises

e cmrae Y OB A ok TN VLT i n S b oY

1.LetG=1{0,1,37}andH ={7,1,0, 3}, Ex-
plain why or why not G =H

2.1§G={0,1,3,7}andL = {x:xEW, x< 10}
then explain why
(a)GCL (gGCL
()G A L (HFCG

3, Let B = { Tom, Dick, Harry}, G = {Judy, Joan}
R = {Tom, Joan, Harry, Judy}.

(a) Explain why or why not Bis a subset of R,
(b) Explain why or why not G is a subset of R,

4. Let E = {x: xEW, xis even} and
P = {x:xis a positive power of 2}, i.e,, P =
{2, 4,8,16,...}

Explain why the following are or are not true:

(a)PC E (e) 100 € E

(WPCE (f)100€ P

()P =E (ECP

(O €E h@CP
5. Let A = {a}

(a) List all of A’s subsets,

(b) List all of A’s proper subsets, '
6, Let B={q, b, ¢}

a) List all of B’s subsets.

b) List all of B's proper subsets,

7. Using the data obtained in Exercise 5 and 6
above can you make a conjecture conceming:

a) the number of subsets in a set containing 4
elements?

b).the number of proper subsets in a set con-
taining 4 elements? ‘

c) the number of subsets in a set containing 5
elements?

d) the number of proper subsets in a set con-
taining 5 elements?

e) the number of subsets in a set containing n
elements?

f) the number of proper subsets in a set con-
taining n elements?

8. What can we conclude if we know that A is a
subset of B but that B is not a subset of A?
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9. Tom, Dick, Harry, Judy, and Ann agree that
when they line up to be photographed the boys
and girls will alternate. List the set of all pos-
sible ways of lining up.

10. In Exercise 9, list the following subsets:

a) The set in which Tom and Ann are next to
each other.

b) The set in which Judy is between Harry and
Dick.

in which Hamy is in the

d) The set in which Judy is in the middle.

Note: When working with subsets it is often help-
ful to use a drawing such as

Q.
to indicate that A is o subset of B, Disks,
that is, circles and their interiors are used

to represent the setsA and B, The drawing

shows that al! of set A is contained in set
B, i.e.,, AC B,

11. What conclusions, if any, can you draw from the
following:

A XCYandYC Z ?
HRCSand TCR ?
OJMC NamdNC Q ?
dXCGYCT,andTCX ?
dACQQCR andRCA?
f\JPCQaoandRC Q ?

12. Let A ={p, q, r}. Explain why the following
are correct or incorrect.

U P
miuuIc,

é ap € A dACA
i bpCA e) {p} €A
o) {p}C A g C A

13. Which of the following sets are equal?
a) {x: x is a letter in the word *‘ follow" }
b) {x: x is a letter in the word ‘‘wolf''}
c) the set of letters in the word ‘‘flow"’

14, Explain why the sets @ oand {@} are different
sets.

15. Let XC Y and Y C Z. Assume x€ X, y €Y,
z € Z, and also assume p ¢ X, q ¢ Y, r ¢ Z.
Which of the following must be true? Explain
o) x€ Z gz¢X  eaqfX
byeX dp€Y f)ré X

dadk s ur
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8.5 Universal Set, Unions, Intersections, Complements

In order to avoid certain logical difficulties, we
will assume that in a given discussion the sets being
considered are subse!s of a set S, called the universal
_set, We have already seen situations where the idea of
a universa! set played an important role. For example,
in finding solution sets for open sentences we have
seen that results depend on the domain or universal
set considered.

The solution set of the open sentence
3+x=2

is {-1} if the universal set considered is the set Z
whereas it is @ if the universal setis set W,

In order to help visualize our work with sets we
shall draw diagrams, called Venn diagrams, which
illustrate them. Here we represent a set by a simple
plane region, usually bounded by a circle. We shall in-
dicate the universal set S by a plane region bounded
by a rectangle.

Example 1: To indicate thet a set A is a subset of
a universal set S we have

O

Example 2: To indicate that A is a proper subset
of B where both A and B are subsets

of a universal sct S we have

)

9

In earlier chapters you considered operations which
assigned new numbers to given ordered pairs of numbers.
Next we shall consider how new sets can be formed
from given sets. There are two important binary opero-
tions that we shall define on ordered pairs of sets. You
will find that the sets assigned to pairs of sets A and
B by these operations have many uses in your subse-
quent work. In what follows we assume that the sets A
and B are subsets of the universal set S.

If A and B are two sets we shall define a new set
called the union of A and B, denoted by ‘A U B'’, os
follows:

Definition: A U B is the set that contains those
and only those elements that belong
either to A or to B (or to both) i.e.

AUB:={x:x€Aorx€B}




(Notice that here 'or'’ is used in the
sense of ‘‘and/or.’’)
Example 1: 1f A ={0,1,2,3}nd B = {3, 4, 5},
then A U B={0, 1,23, 4,5}
Example 2: 1f V = {a, ¢, i, 0, u} ond X = {p, q, r},
thenV U X=1{a,e,i,0,u,p qr}

Example 3: If W is the set of whole numbers and
A={0,1,23},theaWU A=W,

Remark 1: From the definition of A U B we con
Lo 4 al. s

AUB=BUA0

Remark 2: Since A \U B contains all the elements
of A and also contains all the elemtnes
of B we can conclude that

AC (AU Bjand BC (AU B)

In the Venn diagram below we have shaded A U B,
i.e., the region covered by sets A and B, )

(AU b is shaded)

If A and B are two sets we now define a new set
called the intersection of A and B, denoted by ’ANB'’,
as follows:

Definition: A N B is the set that contains those

and only those elements that belong to
b'h A and B, ie@

ANB:={x:x€EAaodx€EB}

Example 1: 1fA = {0,1, 2,3} and B = {3, 4, 5},
then A N B = {3}

Example 2: 1f V = {q, e, i, 0, v} and X = {p, q, t},
then VA X={ }=0

Example 3: If W is the set of whole numbers and
A={0,1,23},thenWN A=
{0, ], 2, 3}= Ao

Example 4: IfA = {0, 1, 2, 3}, B={3, 4, 5}, ond
C={0,3,5}then (AN B) N C=
{3} N 19,3, 5={3}.

Remark 1: From the definition of A M B we can
find that A N B =B N A,

Remark 2: 1fA N B =@, as in Example 2, then
we say that A ond B are disjoint sets,

In the Venn diagrom below we have shaded A M B
i.0,, the area common to both A and B,

Besides obtaining new sets by assigning a new
set to a pair of sets it is also useful to define a par-
ticular unary operation on every subset of S. If A is o
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(AND is shaded)

given subset of the universal setS, we can define a
new set called tha complement of A, denoted by A, as
follows:

Definition: 2 is the set of all elements of S that
are not contained in A, i.e.,

A ={x:x€S, x¢A}
Examp’'a 1: 1S ={0, 1, 2, 3, 4, 5} and
A={02)}, then A ={1, 3, 4, 5}

Exo.ole 2: Let X =W, that is, the universal set
shall be the set of whole numbers.

Let E={x:x<W, xiseven} ond
0 ={x:xEW, xisodd},

Then E = O, That is, the complement
of the set of even whole numbers in the
set of whole numbers is the set of odd
whole numbers, Similarly, O =E.

Example 3: Ifs ={0, 1, 2, 3, 4, 5}, A ={0, 2, 4}
and B ={3, 4}, then

) -A={1,3}
i) B={0,1, 2}
iii) SinceA N B ={4} we see that
AN B={4} = {0,123}

The Venn diagram for A is given below, i.e., all
of S is shaded axcept A,

o i

e e AT B i
LN LRI L

A S

(A is shaded)

The Venn diagram for A U B is given below.
Since A U B is the set consisting of all elements in
S that are not in the set A U B we shade all of S ex-
ceptA U B

(AUS isshaded)
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6 Exercises

1. Let the universal set$ be as follows:
$={0,1,2234,56,738, 9}

Further, let A ={0, 2, 4,6, 8}, 8 ={1,3, 5,
7,9 and C ={2, 3, 5, 7}

Determine the following:

(@ AUB (g) A

(b) ANS (h B

(¢) AUC (i) C

@ ANC (iYAuC

() BUC kl ANC
fBNC m's

2. Using the sets in Exercise | determine the fol-

lowing:

(@) AUBUC (9 AN (BNC
(b) AU (BU C) (d ANBNC

3. Using the setsin Exercise 1 determine the fol-
lowing:

@AV (BNGO
(b)(AU BN (ANC)

(AN (BU O

AN B (A NQ

4. Using the dota obtained in the above exercises
can you state some conjectures concerning the
operations of union and intersection on any sets
A, B, andC? Can you offer any further evidence
to support your conjectures?

5. Let N be the set of natural numbers, i.e., the set
of whole numbers with zero deleted. Let the uni-
versal set be W, that is, the set of whole num-
bers. Determine if the following are true or
false. Explain your answers,

RN L Ry

f A NU W=W OWUN=0

BN N W={0) AWNN=¢

: c)ﬁ={9} dWUN=¢d
dwW=g0 hWWNN=0

p 6. Using the definitionsof *‘ subset,’’ *‘intersec-

3 tion,”’ and *‘union’® write out an argument why

the following are true:
a)(AN B) C A
b)(AN B) S AU B

7. Using your definitions explain why the follow-
ing are true: If A isany set in a universal set

A AU A=A e)S =0
MAN A=A )0 =S
JAU A=S g AU $=§
dANA=g hANGB=0

. 8. |f we denote the *‘complement of the comple-

ment of a set A by «“R* determine what set
is equal to.

9. Copy the Venn diagram below and shade in the

10.

11

]2.

eet rapracented by A M B,

ap

Let us define a new operation, called the differ-
ence of A and B, denoted by ‘“‘A\ B,” as

follows:

A\ B= {x|x€A, x¢ B}

a) Determineif A\ B=A N B.
b) Determineif A\ B =B \ A,
c) Determineif (A\ B) C A

d) Determine the set represented by the union

of A\ B, A N B, and B\ A,

e) Determine the set represented by the inter-
sectionof A\ Bond B\ A,

Copy the Venn diagram below and _shade in the
set represented by (A N B) U (A N B)

(D)

Let us define a new operation cclled the sym-
metric difference of A and B, denoted by ‘‘AAB’’,
as follows

AAB ={x: x€EA, x€B, x§ (A N B)}
a) Determine ifAAB = (AU B)\ (A N B).
b) Determine if AA B = (A\ B) U (B \ A).
¢) Determine ifAAB = (A N B)U (A N B).

d) Determine what set is represented by

(AU B\ (AAB).

=
)

8.7 Membership Tables

We shall now show a helpful way of stating our
definition of A U B by means of a table.
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Recall that x € (A U B) if ond only if x€ A or
x € B (or both). Thus wehave

i) if x€EA and x€ B, then x€E(A U B)
ii)ifxéAcndx¢ B, then x€E(A U B)
iii) if x#A and x€ B, then x€E(A U B)
iv)ifx¢Aandx¢B, then x £(A U B)

Notice that (i) — (iii) above show that x€ (AU B)

if x is an element of at least oneof the sets A or B,
and (iv) above shows that x ¢(A U B) when andonly
when x¢Acndx¢B.

The table below is a convenient way of expressing
the information given in (i) - (iv) above, We call this
the Membership Table for A U B,

A B JAUS

Rowl: € € €
Row2: € (-4 €
Rowd: ¢ € €
Rowd: ¢ -4 ¢
Table 1

Question 1: Can you explain what is meant by the
entries in each of the rows in the
above table?

Using our definition for A N B we obtain the fol-
lowing Membership Table for A N B

A 8 [Aans
Rowl: € € €
Row2: € 4 4
Rewd: ¢ € ¢
Rowd: ¢ 14 |4

Table 2

A
The above table indicates that x €(A M B) if
and only if x€EA and x€ B,
Questicn 2: Can you explain what is meant by the
entries in each of the rows in the
table above?

Notice that in both of the tables above we had to
have four rows in order to consider all possible cases
of membership for two sets, It turns out that if weare
considering one set then only two rows are required.

For example, the Membership Table for Ais

A A
Rowl: € "4
Row2: ¢ €
Table 3

The reason that we have only two rows is easy fo under-

stand. We are considering only a_single set A, Either
xEA or x¢A. 1fx EA, then x £ A by definition of A,
This is the information indicated in Row 1. If, on the
other hand, x ¢ A, then xEA,

Row 2 indicates this fact, Since there is no third mem-
bership possibility for x, no further rows are.requirod.
Let us i llustrate how membership tables can be
used to establish an important property of set. That is
AUB=ANB
[A Law of DeMorgan]

First we form the membership table of A U B,
and then toke the complement of A U B, Thatis

A 8 |AUS|AUS

€ €| ¢ ¢

€ ¢ € 4

4 €| € ¢

g | ¢ | ¢ | €
Table 4

Note that the column headed by A U B makes use of
our previous Table 3 for complements,  _  _
Then we form the membership_table of A M B by

working out A, B, and then A N B, That is

A ] A 3 |ANT

€ € -4 4 4

c|lg |glecl¥

g | clc|l¢g|¥f

"4 4 € € €
Table 5

Note that the columns headed by A and B make use of
our previous Tahle 3 for complements and the column
headed by A M B applies Table 2 to the entries in

the previous two columns.
Because the resulting entries in the final columns

in Tables 4 and 5 show that
i) ifx€E(A U B), then x€ (AN B), then we
have (A U B) C© AN B) and
i) ifx€ (A N B), then x €(A U B), then we
have (A N B) C (A U B) we conclude that
AUB=ANE.
The information contained in Tables 4 and 5 can be
conveniently expressed in one table as follows:

A s |aus]aus| A 3 |ans
€ € € ¢ | ¢ £ 1 ¢
e |glele ¥ € ¢
£ lele | g€ £ | ¢
¢ ¢ |l ¢l e ¢ €| €
A

Table 6

Membership tables can also be used to show that
sets are not equal to each other. For example,
Table 7 shows that

AUBZAAUB
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Table 7

. Wa see that the enfries in the columns headed by

‘A U Band A U B are not identically the same, (The

entries in Rows 1 and 4 are the same but the entries in
Rows 2 and 3 are not the same.) Thus we conclude that

‘ AUB #AUB,

It was shown earlier that if we are considering one

set then only two rows are required in the membership
table. For example, the table below shows that A = A,

€
4

Row 1t
Row 2:

>
R »
O >

, Why two andonly two rows are required in such
tables as Table 8 can be seen if we make useof a Venn

. diagram. If we reexamine the Venn diagram for sets A

‘ and A, that is

>l

. we see that there cre two distinct regions determined
. which we can number, respectively, as 1 and 2. Then

- we have Regions 1 and 2 corresponding, respectively
. tosets AandA IfxEA

2

or x is an element in Region 1 this corresponds to Row
1in Table 8. If XA (or equivalently x,¢A) or x is an
element in Region 2 this corresponds to Row 2 in Table
8. Since there are two and only two recions to consider
there are two and only two corresponding rows to con-
sider,

In a similar way if we are dealing with two sets A
and B in an universal set S, such as in Tables 6 and 7
above, we find there are four distinct regions which are
disjoint, (i.e. they have no elements in common; see
Remark 2 in 8.5). Each of these four disjoint regions
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correspends to oneof the four rows found in the mem-
bership tables involving the two sets A and B. In the
Venn diagram below we have numbered these disjoint
regions 1, 2, 3, and 4,

)

-
-

Question 3. Explain why the Regions 1, 2, 3, and
4 in the above Venn diagram corres-
pond, respectively, to the Rows 1, 2,
3, and 4 in the membership table

below.
A l »
Rowl: € €
Row2: € _¢__
Rowdt ¢ | €
Rowd: ¢ A
Table 9

1 we draw a Venn diagram to represent any three
sets A, B, and C in a universal set S, as below, we
find there are eight disjoint regions which we number
as indicated below,

Question 4: Explain why the Regions 1,2, 3, 4, 5,
6, 7 ond 8 indicated in the Venn dia-
gram above corresponds, respectively,
to the Rows 1, 2, 3,4, 5, 6,7 and 8
in the membership table below.

A s C
Rowl: € € €
Row2: € € 4
Row2: € A I
Rowd: € 4 [~ 4
Rovs: ¢ € €
Rowo: ¢ € -4
row7: 4 €
Rowe: 4 -4

From the above we see that membership tables in-
volving three sets give rise to eight distinct cases to
be considered, each case corresponding to a row
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in the table. The following partially completed table (@) AU(B U € =(AU BLUC
can be used fo determine if A LU (B M C) is or is (HAN(B N C) -(A N B)NC

not, equal to (A U B) N (A U C). (That is, we .
can determine if **\y ' is distributive over ' N"".) 5. (a) Copy and complete Table 11 in 8.7
(b) Explain why or why not

A [ ] C snclAau@EnOlAus | AUC |(AUBIN(AUC) AU(B n c) =(AU B)n(A U C)

e [eleje] ¢ € | e € , . .

Tl <71+« - 1< = (¢) Using a membership table determine if

c g lclg]| ¢ c | € € ANBUO=(ANBUMANQ

L A %L 6. (0) Examine the tables given which involve one

g | €| € | set, two sets, and three sets, Can you de-

¢gle| ¢ scribe a pattem that was used in assigning

F 1 9] ¢€ # €' and “'¢* in the columns headed by the

¢ |¢gle | 2] ¢ || ¢1|¢ 4 sets being considered? ;
Table 11 (b) Can you efficiently set up a table which in- "

volves four sets?

8.8 Exercises (c) How many rows would be necessary in a s
membership table which considers 1

1. (a) Copy and complete the following member-

ship table: (1) Four sets  (2) five sets  (3) n sets?
7. We define the differenceof two sets A and B, de-
A ol Kaldd B2 noted by “A\B", as the set consisting of all
clele elements of A which are not elements of B, For
S € example if $ ={0,1,2,3,4,5 6,7}, A=
71¢ {0, 1,2,3], nd B = {1, 3,5,7}, then A\B =
71 ¢ ¢ {0, 2} and B\A ={5, 7}
Explain why the followingis th bershi
(b) What can you conclude from the table given (a) mﬁea;:r“A(B:e owmgus © membership
in ¥a)?
(€) Use a membership table to determine if A| s |ANs
ANB=B NA, c lel|¢
(d) Use a membership table to determine if € 1] ¢
(WA U A=A @QANA:A : ; :
(e) How are the tobles used in (c) and (d) dif-
ferent? (b) Using membership tables prove or disprove
2. (a) Copy and complete the fetoWHgmember- the following
Shlp table (]) A\B :An—é
A 8 jansfAus|l A | § |Aus 2 (AU B)\B =A\B
€ | ¢ J’F (3) (A\B)U(B\A)=A U B
€| ¢ (4) (A\B)U (A N B) =A
LA L N N | L L (&) Usingmembership tables prove or disprove
“«1 ¢ the following:

1) AU(B\O) =(A U B\AU )
2 AN(B\C) =(A N B\(A N C

8. We can define the symmetric difference of two
sets A and B, denoted by ‘‘AAB", as follows:

AAB = (A\B) U (B\A)
(a) Construct a membership table to show that
(1) AAB =(A U B)\(A N B)
(2) (AAB)U(A N B)=A U B
(3) (A U B)\(AABj=A N'B

(b) What can you conclude from 2(a)?

3. Use membership tables to detemine if the fol-
lowing are or are not, true:

(6) AN (AU B) =A
()ANB-ANB
(A (AN BUAN B)=A
(dAVUA N B =AU B

4, Using membership tables prove that
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(4) (AAB)\B =A\B
(5) AAB = BOA
(6) AA (BAC) =(AAB)AC

#9_ Recall how Venn diagrams were used to repre-
sent one set, two sets, and three sets. Invest-
igate what occurs when four sets are consid-
ered. Can you devise a scheme, not necessarily
using only circles, which indicates four sets
and the proper number of disjoint regions such
that each disjoint region corresponds, respec-
tively, to a row of a membership table involv-
ing four sets? Write a report of your findings.

' 8.9 Preduct Sets: Relations

In earlier parts of this book you have often dealt

. with the idea of an ordered pair of elements, In mony

cases you had to distinguish between the pair (a,b)
and the pair (b,a). For example, this occurred when
you discussed operation, mapping, outcome sets, lat-
tices, etc. In order to stress that the order in which
the elements of a pair should be considered is an im-
portant idea one of the elements in the pair was desig-
nated as the first element or coordinateof the pair and
the remaining element was designated as the second
eiement or coordinate of the pair. We shall nowmake
use of the ideaof ordered pair in order to show how a
new set con be formed from two given sets.

Let A ={1,2,3} and B ={4,6}. We form from the
sets A and B the set of all pairs such that each pair
contains an elementof A as first element and an ele-
ment of B as second element, The pairs which are the
elements of this new set are (1,4), (1,6), (2,4), (2,6),
(3,4), and (3,6). We designate such a setof ordered
pairs of A and B by ““AXB'’, read *‘the Cartesian
product of A and B’ or simply “‘A cross B'', Thus.

AXB = {(1,4), (1.6), (2,4), (26), (3,4), (3,6)}
(No'e: The set AXB is named after the math-

ematician René Descartes who, in the seven-
teenth century, studies such sets,) Observe
that set A contains three elements, set B con-
tains two elements, and the set AXB contains
six elements,

Given the same sets A and B as above we can al-
so form the set BXA, We have

BXA ={(4,1), (42), 4,3), (6,1),(6,2), (6,3)}

We see that if we interchange the order of the
pairs in AXB we obtain BXA. It is important to note
that although BXA also contains six elements we have

AXB # BXA.

We can illustrate this inequality by graphing the
lattice points associated with each of the Cartesian
products. In the graph below we see that elements of
AX B are represented by points denoted by crosses
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whereas the elements of BXA are represented by points
denoted by circles,

—% 3
5
% ﬂk
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1 2 3 4 5 é

In mathematics we most frequently form the
Cartesian product of a set with itself. Thus, if we
again used the given setsA and B we obtain

AXA ={(1,1),(1,2), (1,3), (2,0),(2,2), (2,3),
(31),(32), 3,3)}

and
BXB = {(4,4), (4,6), (6,4), (6,6)}

We can also use tree diagrams fo represent
Cartesian products. Thus we would have

for AXA and sxs
! a0 ‘ (4,4)
| 2 01,2 4
3 03 s (40
Ve N CY)
2 2 (2 6
<3 (2,3) s (60
! CR)]
3 2 (G2
3 (3

The follo;wing examples illustrate other instance.s
where we consider the Cartesian product of a set with
itslef,

Example 1: Let the set S represent the outcome
set of a *oss of a single die, that is
$={12,34,56}. Then S XS would
represent the outcome set for the toss
of a pair of dice,

Example 2: Let T = {a}. Then T XT = {(a,a)}.
" Note thet T 7 TXT.
Example 3: Let Z represent the setof integers.

Then 2XZ can be represented by
the set of lattice points in the plane.

Example 4: Let W be the setof whole numbers,
The operation of additionon W is a
mapping which assigns to every ele-
ment of WXW a unique element of W
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colled a sum, In symbols + o<b, Thus | ={(2,3), (2,5), (3,9}
WX We—tme W We could write
We now summarize our ideas about Cartesian 2,3€L, @,5€] , md(3,5€|
product sets with the following definitions: or equivalently
Definition: The Cartesian product AXB of two sets 2| 3,25 ond 3| 5.
A and B is the set of ail ordered pairs (We usually express the above by writ-
(a,b), wherea € A and b € B. ing2<3,2 :ps' and 3 < 5.) by w
More compactly we have Example 2: Let A = {2, 3, 5, 6}. We define a re-
Definition: AXB = {(a,b) : a €A and b€ B}, lation D on A as follows: aDb if and E
Very often in mathematics we are interested in sub- onlyifa€h bEA enda dividas" b, SA
sets of Cartesian products, Since the elements of a Car- . Hence, D ={(2,2), (2,6), (3,3), (3,6), ;
tesian product set are ordered pairs of elements, the ele- (5,5), (6,6)). We could also write 4
ments of non-empty subsets of this Cartesian product set 2D2, 206, 203, 3D6, 506, and 6D6.
are also ordered pairs. For example, if AX A= {(1,1), Obsarve that D © (AXA).
(1,2),(1,3), (2.1). (2,2), (2,3), (3,1), (3,2), (3,3)} Note: We frequently dencte the relation *'di-
then X={(,10, (2,2, 33} and vides’’ by the symbol * |’ Then we
Y = {0, (1,2, (1,3), (22), (2,3) 33)} would express the above by 212, 2|6, |

3]3,3(6, 5|5, and 6 6. The fact that

are proper subsets of AXA. Such subsets as X and Y 43 does not divide 5 could be writ-

of AXA are called relations on AXA., It is importont to

note that a relation is a set of ordered pairs. ten as 3f'5 or 3P 5 or (3,5) ¢ D.

We could define the relation X on AXA by an ex- We could easily groph the relation given in Ex-
plicitrule suchas X ={(a,b) :a €A, bEA, a =b} ample 2 after constructing the coordinate diagram of
and similarly we could define the relation Y on AXA AXA. Instead we shall represent the relation by a dif-
by the rule. ferent device. A convenient way to designate some re-
Y ={(a,b) : a € A, bE A, a <b}. Relations are usual- lations is by use of arrow diagrams,
ly given by some explicit rule. Note however that If aRb, then we designate 'tzwo points and label

- them *‘a” and “b’’. Because aRb we direct an arrow
T={a.n, 2N 62 ) from thepoint labeled “‘a’* to the point labeled *‘b".
is also a relation on AXA although an explicit rule
which defines this relation may not be apparent. Again, /———’—\
a relation is a set of ordered pairs. ¢ y
; If an ordered pair of elements (a,b) is in the rela- Note that if bRa then the direction of the arrow
; tion R then we shall express this by writing would be reversed.
(9,b)ER
or by writing o /——_‘\b
aRb

If we have both aRb and bRa then indicate both
We read this latter notation as ‘‘a is in the relation R of these instances by

to b”’. Thus for the relation X we have (1,1) 2X,

(2,2) € X, (3,3) €X or, equivalently, 1X1, 2X2, 3X3,

Similarly for the relation Y we have (1,3) €Y or, "Q"
f equivalently, 1Y3. It may appear strange, at first, to
' see such statements as " 1Y3'’. However, a familiar

example of the *‘aRb’ notation is seen when we con-
sider the relation ‘‘equality’”’, denoted by the symbol

If it is the case that a R a then we draw a loop at
the point labeled ‘‘a’’.

“=1 on the set WXW. If we write “‘a = b"’, and which "

we read as '‘a equals b, where a and b are whole 0

numbers we always mean that “‘a’’ and '‘b" are differ- o

ent names for the some whole number. Thus we have

1=1,2 = 14, 3 =241, 0 = 1-1, etc. Let us consider Thus we con draw the following arrow diagrom to

the following examples of relations. represent the relation D in Example 2 above:

Example 1: Let D = {2, 3, 5}, We define a relo- Observe that ar: arrow is drawn which connects

tion | on DXD as follows: (a,b) € L 1429 46 *6" because 2|6 and also an arrow is drawn

ora|_bif and only if a€D, bED, and which connects ‘3" to ‘6" because 3|6. Note that

14




I A R e Iy

L}

Q

no arrow joins ‘2"’ to *‘5" because 2 does not divide
5 (i.e., 2/! 5). Note also the loops at each point which
indicates that each of the numbers divides itself,

Exomple 3: Let P be the set of all subsets of the
set {x, y}.
The set P then isgiven by

P-= {d, {X}, {y}o {xly} }

Consider the relation ‘‘is ¢ subset of”’
denoted by ** € ", on the set P, We
use an arrow diagram to indicate which
elements of P are subsets of each
other,

: Observe that at each point representing an ele-

i ment of P we have a loop. This is because the elements
of P, namely @, {x}, {y}, {xy}are sets, and every
set is a subset of itself. Also, ‘‘@’* is connected to
“{x}*",**{y}", and “{xy}" because the empty set

@ is a subset of every set, Further, both ** {x} '’ and
““{y} " are connected to *‘{xy}" since {x}C {x,y}
and {y} € {xy}. Do you see that there are nine ele-
ments, that is, nine sets of ordered pairs of elements,

ir the relation *‘ C*' on P?

Example 4: As in Example 3 let P be given by
P= {@, {x}, {y}, {xy}}

The relation *‘is a proper subset of'’,
denoted by ‘‘C ", on the set P is a
subset of the relation represented in
the arrow diagram above, If the loops
are removed from that diagram then we
have a representation for ‘' C '’ on P,

Example 5: Let Z represent the set of integers,
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Define the relation S on Z as follows:

aSbifandonly ifb is the square of A,
Thus

§ = {(0,0), (1,1), (<1,1), (2,4), (3,9),
(=3,9)... .} Observe that § € (ZXZ)
(Because we have both 254 and -254
we see that the relation S is not a map-
ping of Z into Z, Why?)

Let C represent the students in a class-
room, Define the relation L on C as
follows. Two students x ond y are in
the relation L on C if and only if x
“lives within 1 block of"’ y. If C repre-
sents the students in your ciass is the
relation L. on C an empty set?

Example 6:

Example 7: The following arrow diagram shows a
simplified family tree,
Tom
Henry
Emma

The above tree indicates that Tom had
four children, namely, Henry, Bill, Mary,
and Joan, Henry had one daughter,
Emma. Bill and Joan each had two chil-
dren whereas Mary had none, Using

first letters to represent people we see
that the relation ‘‘is a grandfather of'’
is the set {(T,E), (T,G), (T,A), (T,P),
(T,F)}

L et us now summari ze some ideas associated with
the concept of relation, A binary relation (or relation)
R from a set A to a set B assigns to each ordered pair
(a,b) in AXB exactly one of the following statements:

(i) ““a is related to b”’, written ‘‘aRb"
(ii) ““ais not related to b’’, written “af b

A relation R from a set A to a set B is a subset of
AXB. Since this is true we see that every relation is a
set of ordered pairs, if the relation is non-empty. In
mathematics we aremost often concemed with arela-
tion R from a set A to the same set A, We say, in this
case, that R is a relation on the set A, Here, of course,

RC (AXA).

8.10 Exercises

1. Using Example 7 in 8.9 list the elements in the
following relations: (Note: Use first letters to
represent people.)
() is a father of
(b) is a brotherof

(c) is a grandmother of

(d) is an uncle of

(e) is a sister of

R
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2, Let P = {1,2} and Q = {2,3,4}. Determine the

following Cartesian products:
() PXQ (c) PXP
(b QXP (d) QXQ

3. Copy the coordinate scheme, given below, on
your paper. Using Exercise 2 above graph the
following Cartesian products using the symbols
indi cated:

Q
|

4
3
2
L

) 2 3 4 -

(a) graph PXQ using crosses ( X)
(b) graph QXP using circles (o)
(c) graph P XP using triangles (A)
(d) Determine the following:

(1 (PXQ) N (QXP)

(2) (PXP) N (QXP)

(3) (PXP) N (PXQ)

4 PX (P N Q)

(5) (PXP) U (PXQ)

©GPX(PUQ

(¢) On the basis of your answers to 3(d) above
con you make any conjectures?

4, LetM = {1,2}, N = {2,3}, and P = {4,5}
(a) Detemmine the following:
(1) (MXN) U (MXP)
@QMXNU P

(b) Graph the results found in (a). Can you make
an observation?

5. LetA ={0,2, 4} and B= {0, 1, 2}

Let R be the relation ‘‘is greater than,”” denot-
ed by *> ", from A to B, i.e,, aRb if and only
ifa> b

(a) Write R as a set of ordered pairs.
(b) Of what setis R a subset?
(¢) Explain why or why not OR2.
(d) Explain why or why not 4R3.
6. LetB ={2, 4,5, 8, 15, 45, 60}. Let R be the

relation **divides,” denoted by ‘'], on the set
B, i.2., aRb if andonly if al b,

(a) Write R as a set of ordered pairs.
(b) Of what set is R a subset?
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(c) Represent the set R by means of an arrow
diagram.

(d) Esplain how your diagram does or does not
indicate the following:

(m2l2 (4) 2| 45
(2)2]4 (5) 455
(3)218 (6) 60160

7. (a) Let S be the set of all subsets of the set
{x}. Draw an arrow diagram to represent
the reiafion *‘is a subseiof’’, denoted by
“C ", onthesetS.

(b) Let T be the set of all subsets of the set
{x, y, z}. Draw an arrow diagram to repre-

sent the relation “'is a subset of’’, denoted
by ¢“C ", on the set T,

8. Let V={1, 2 3,4, 5} We define a relation R
on V by mecns of the following table

b

N 1 2 3 4.5
1[1 2 3 4 5
2]2 1 4 5 3
3ls 5 1 2 4
4l 4 3 5 1 2
s|5 4 2 3 1

Prove that for all @, b, and ¢ in V that it is not true
that aR(bRc¢) = (aRb)Bc.
9. Let A = {1, 2, 3, 4}, We define a relation R on
A as the set of ordered pairs of numbers desig-

ncted by crosses ( X) in the coordinate diagram
of AX A given below,

A

- N W »

) 2 3 4

(a) Explain why each of the following is true

or false:

(1) 1R (5) 4R3
(2) 2R2 (6) 4R2
(3) 3R2 (7) 4R4
(4) 2R4 (8) 3R3

(b) Find {x: (x, 2) ER}, that is, find all the
elements in A which are related to 2.

(c) Find {x : 4Rx}, that is, find all the ele-

ments in A to which 4 is related.
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19. (a) Is every relation a mapping? Explain.
(b) Is every mapping a relation? Explain.

(¢) Let the relation R from A to B be sketched
on the coordinate diagram of AX B. What
test could one devise in order to detemine
whether or not R is a mappingof A into B?

11. Research Problem: If set A has m elements and
set B has n elements, then how many different
relations could we define from A to B? Experi-
ment and write a report of your findings.

8.11 Properties of Relations

Recall Example 2 in 8.9 where A = {2, 3, 5, 6}
‘and we defined a relation ‘‘divides’’, denoted by *‘D"’
‘on A, We saw that this relation was a subset of the

; Cartesian product of set A with itself, In this section
“we shall consider only relations R which are a subset
 of the Cartesian product of some set A with itself.

s That is,

R AXA,

: Again we shorten this by saying R is a relation on a
- set A,
Earlier we said that if R is a relation on a set A
 we could obtain another relation by interchanging the
‘ elements (a,b) of R. The relation D in Example 2 of

. 8.9 was

l: D= {(202)0 (206)0 (303)0 (306)1 (505)0 (606)}

' The new relation obtained by interchanging the ele-
. ments of D we shall call the inverse relation of D, and

- denote it by 'D71"", Thus, D71 = {(2,2), (6,2), (3,3),
. (6,3), (5,5), (6,6)}

L Observe that, here, D7 D1, Why?

: If again A = {2, 3, 5, 6}, then

: T ={(2,2), (3,3), (5,5, (6,6) is a relation on A,

: Observe that, here, T = T71,

The above suggests the following definition:

Definition: Let R be a relation on a set A, The
inverse relation of R, denoted by
“R71* consists of exactly those
ordered pairs (b,a) such that (a,b) ER,
In short,

RV - {(ba) : (a,b) ER}

Question 1: IS is the relation on Z given in Ex-

ample 5 in 8.9 that is

S = {(0,0), (1,1), (-1,1), (2,4), (-2,4),
(3,9),...}, then how can you describe
the inverse relation S on Z?

.

Question 2: How can you describe the inverse re-
lution of the relation described in Ex-

ample 7 of 8.9?
The relation D on set A in Example 2 of 8.9 has a
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property which we can see by re-examining the arrow
diagram of this relation, This is, ot every point we
find a loop. Thisis becouse2]2, 3|3, 5| 50nd 616.
Thus for every a € A, we have a D a or (a,a) €D, We
describe this situation by saying D is a reflexive re-
lation on A,

Similarly, the relation ' € '’ on the set
P=1{@, {x}, {y}, {x,y} }, as given in Example 3 in
8.9 is a reflexive relation on P. Again, the arrow dia-
gram indicates this reflexive property.

The relation ** C *’ on the same set P, as given
in Example 4 in 8.9 is not a reflexive relation on P,
because it is not true that for all a € P, wehave a
a. (In fact, for all a € P, wehave a o, This situa-
tion is described by saying ' C*’* is irreflexive on P.)

Let us make a precise statement conceming this
property of reflexivity that a relation on a set may or
may not possess.

Definition: Let R be a relation on a set A, R is
called a reflexive relationon A if and
only if for every a €A, (a,a) ER or
aRa, In other words, R is reflexive on
A if and only if every element in A is
related to itself.

Question 3: Let S be the relation on Z given in
Example 5 in 8.9, thatis

s ={(0,0), (1,1), (-1,1), (2,4), (-2,4),
«oo}o I8 S reflexive on Z? Explain,

Question 4: Let V ={q, e, i, 0, u}. Let R be the
relation on V given by

R ={(0,ﬂ), (ope)' (ep‘)p (Q,i), (i,i),
(0,0), (v,v)}.

Is R reflexive on V? Explain.

Question 5: As in Example 6 of 89, let Crepre-
sent the students in a classroom, L et
L denote the reiation "lives within 1
block of** on C. Is L reflexive on C?
Explain,

Certainly, one of the most basic relations that we
encounter with the set of whole numbers W is that of
‘"equality,” denoted by ’="'. Throughout this course
we have assumed that for all x€E W, x = x. In short, we
have assumed that “'is equal o'’ is a reflexive rela-
tion on the set W,

Another important property of the relation “‘is
equal 10"’ on the set W which we have assumed is the
following:

If x, y are whole numbers and x =y, then y =x. We ex-
press this property by saying that 'is equal to’’ is a
symmetric ralation on the set W,

Again let C represent the students in a classroom
and L denote the relation ‘'lives within 1 block of’’
on C. It is evident that if Bill lives within one block
of Jim, then Jim lives within one block of Bill. The
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relation *‘lives within one block of’’ is a symmetric re-
lation on C,

Observe that when discussing whether or not a re-
lation is symmetric on a set we encounter such state-
ments as

lfx =y, theny =x, ond

If Bill lives within one block of Jim, then Jim
lives within one block of Bili.

Both of the above statements are of the form, ‘‘If
p, then q.” Such statements are called conditionai
statements and are denoted by

p —q

The conditional *'p ——=q" con also be read as *‘p
implies q."’ Conditional statements occur frequently,
especially in mathematics. Therefore, as your study of
mathematics progresses, you will become more familiar
with properties of conditional statements. For now, let
us note the following:

Remark: The conditional p———eq is true unless
p is true and qiis false. In other words,
we do not allow a true statement to imply
a false statement.

Another common statement in mathematics is the
form “p if and only if q.”” Such statements are called
biconditional statements and are denoted by

pe—1

You recall that “'if and only if"* occurs in many of the
definitions that you have seen. |f pe—sq we mean
that both p——1q and g——=p. Since both “ees’
and ‘‘e=——='? are relations on statements we can de-
termine what properties they possass. We find that
""" is reflexive, that is, for all statements p,

it is true that p———ep. In other words, a statement
always implies itself. However, '’ ig 0t @
symmetric relation. It is false that if we know £ e,
that we can conclude that Q ——p. For example, the
following statement is true:

If a triangle has three sides with equal measure,
then it has two sides with equal measure.

However, the following statement is not a true statement:

If a triangle has two sides with equal measure, then
it has three sides with equal measure.

If we denote ‘‘a triangle has three sides with equal
measure’’ by *‘p'’ ond denote “‘a triangle has two sides
with equal measure” by ‘‘q”, we see that

p———eq does not always imply Qe——ee-p.
Thus “—1." is not a symmefric relation.
The above examples suggest the following definition:

Definition: Let R be a relation on a set A where a
and b are any elements of A. We say
R is a symmetric relation on A if and
only if aRb implies that bRa.

ot s mme s 2 A W

We can rewrite the above as

R is a symmetric relation on Ae——r (aRbee—me-

bRa)

Example 1: Let K = {1, 2, 3}. An easily found
relation R on K is to consider the
Cartesian product KX K. Since KXK
€ KX K, KXK isa relation R on K.
We find that R = {(1,1), (1,2), (1,3),
2,1), (2,2), 2,3), (3,1), (3,3), 3,4}
Nots that 1R2 ——=2R1, 1R}3——,
3R1, etc. |f we consider the arrow dia.
gram of R on K

We observe that R is a symmetric re-
lation on K since whenever thereis an
arrow from a to b there is a correspond-
ing arrow from b fo a. Recall that the
loops signify R is also a reflexive re-
lation on K.

Example 2: Let K = {1, 2, 3} as above and con-
sider the relation R71 on K. Recall
R~V = {(b,q) : aRb}. We find that in-
terchanging the elements in each or-
dered pair of R gives rise to the same
set. Thus R™1 = R. In Example 1 we
saw that R is symmetric on K. Since
R71 =R then, of course, R™' is also
a symmetric relation on K. Note that
the arrow diagram of R™' is the same
as the arrow diagram of R. An exam-
ination of Example 2 leads us to the
following remark:

Remark: If R is a symmetric relation on A, then
R71 is a symmetric relation on A,

Example 3: Let J = {1, 2, 3,4} Letus define a
relation S on J as follows: If a, bEJ
then aSbe——a 7 b, Thus 154 be-
cause | # 4. Also 451 because 4 1.
The arrow diagram for S on J indicates
that S is a symmetric relotisn on J.
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Example 4: Let Z be the set of integers, The re-
lation ‘“‘less than or equal to'’, de-
noted by ‘‘<’’ is not a symmatric re-
lation on Z because forall a, bEZ,
a < b does not imply that b < a, For
example 3 < 4 does not imply 4 < 3.

The relation described in Example 4, that is <"
‘on Z, is not symmetric, however it does illustrate an
 interesting property. What couid you conclude if you
were told for two integers aand b that a < b and also
 that b < a? The only way that this could be true,

- would be to have a = b, We describe this situation by
 saying that the relation ** <’ is anti-symmetric on Z,
' Note thut if a 7 b, then possibly a < bor possibly

b < a, but never both. In general we have the following
. definition,

Definition: Let R be a relation on o set A where
¢ and b are cny elements of A, We say
R is an anti-symmetric relation on A
if and only if aRb and bRa implies
a-= b.

Example 1: Let N be the setof natural numbers
and let D be the relation in N defined
by ‘x divides y'’. D is anti-symmetric
on N since x divides y and y divides
x implies x = .

Example 2: Let S be a coliection of sets, and let
R be the relation on S defined by ‘A
is a subset of B."”’ Then R is anti-
symmetric on S since A € B and
B C Aimplies A = B,

Question: Can you describe a relation on a set
which is not anti-symmetric?

The next property that we shall examine is illus-

' trated by the following: We know for the set W of whole
" numbers that ifa = b and b = ¢, thea a = c. The rela-

. sion of “‘equality’’ is saidto be a transitive relation

. on W, Similarly, if we examine the relation R in Ex-

. ample 2 above we should recall that ifA C B and

B C C, then A C C. We say that the relation ** © "
is a transitive relation on S. The generai property is

. given in the following definition,

Definition: Let R be a relation on a set A where
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Example 1:

Example 2:

Example 3:

a, b, and c are any elements of A, Ve
say that R is a tronsitive relation on
A if and only if aRb and bRc implies

aRe.

Let Z be the set of integers and let R
be the relation on Z defined by ‘‘x is
less than y."”’ Then R is a transitive
relation on R since

ifx <yandy <z, then x <z,
in particular,

0<7and7< 100 —0 < 100.
Also,

-5 < 3and 3 < ~]=—s-5 <
(Recall that the symbol ' ——= '’ can
be read ‘*implies’’)

LetH = {q, b, c, d}. Let us define a
relation R on H as follows. R =

{(O,b), (b,c), (a,€), (c,d), (d,d)}

If we examine the arrow diagram of the
relation Ron H

b

d

we see that aRb and bRc — aRe.
However,

aRc and cRd does not imply
that aRd. The arrow points from d to a.
This means dRa and not the required
aRd. Since the relation R fails to be
transitive for at least one triple of
slements of H, we say that Ris not
transitive on H.

Let B= {2, 3, 6,12} and let D be the
relation ‘‘divides’’ on B, The arrow
diagram below indicates that 3 |6 and
6|12—=3] 12, Also 2|6 and 6 |12
—2]12,
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We say that D is a transitive relation on B.

We have pointed out in this section that the im-
portant relation of “‘equality’’ on the set W satisties
three properties, namely, the reflexive, the symmetric
and the transitive properties. That is,

(i) For every whole number 0, a = a (Reflexiv-
ity)

(i) For any whole numbers acnd b, o = b—sb=
a (Symmetry)

(iii) For any whole numbers o, b, and ¢, a = b ond
b=c—sazc¢ (Transitivity)

In the next section we shail see that if any relo-
tion on a set has these three properties some import-
ant results can be derived. Because equality on a set
is reflexive, symmetric, and transitive we refer to any
other relation on a set which has these properties as
an equivalence relation. Thus we have the following
definition:

Definition: A relation R on a set A is an equival-

ence relation if ond only if

(1) Ris reflexive, that is, for every
a €A, aRa.

(2) R is symmetric, thet is, for every
aand b in a, aRb implies bRa.

(3) R is transitive, that is, for every
a, b,and ¢ in A, aRb and bRe
implies aRe.

Consider the relation ‘‘has the same
first name as’’ on the set C of stu-
dents in a classroom. We must check
to see that the requirements in the
above definition are satisfied. Let x,

y, and z be any students in the class.
Then

(i) x has the same first name as x

Example 1:

(3i) if x has the same first name as y,
then y has the same first name as
x.

(iii) if x has the same first name as y
and y has the same first name as
z, then x has the same first name
as z.

Since each of the above is true, “has
the same first name as'’ is (i) reflex-
ive, (ii) symmetric, and (iii) transitive
and hence is an equivalence relation
on C,

Consider the relaticn ** € " onall
the subsats of A = {q,b}.

We find that ' C "' is reflexive and
tronsitive cn A, but since {a} o
{a,b} does not imply {a,b} {c}

Example 2:
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we have that the relation is not sym-
metr: ¢ on A. Hence it is not an equiv-
alence relation on A,

Let K = {1, 2, 3} with a relation de-
fined on it which is illustrated by the
arrow diagram below,

Exaniple 3:

Examin2 this diagram and convince
yoursel f that the relation illustrated
is (i) reflexive, (ii) symmetric, and
(iii) transitive on K, and hence is on
equivalence relation.

8.12 Exercises

1. Let E = {q, b, ¢} with the following relation R
defined on it.

R= {(ola)l (olb)l (blc)l (blb)l (C,C), (bso)}
(a) Exolain why R is a relation on E.

(k) Draw an arrow diagram which represents R
on E.

(c) Explain why or why not R is (1) reflexive,
(2) symmetric.

(d) Write out the ordered pairs in R,
(e) Draw an arrow diagrom for R on E.

. Let S be a relation on aset F where F = {1, 2,
3, 4} and S = {(I:l)p (113)0 (202): (2:3): (20])1
(3,2), (3,3), 3,4), (41)}

(a) Draw an arrow diagram for S.
(b) Explain why or why not Sis

(1) refiexive
(2) symmetric
(3) transitive

. Each of the foilowing open sentences defines o
relation on the set W of whole numbers. Deter-

mine if each is or is not @ reflexive relation on
w.

(a) ;‘a is less than or equal to b’’
(b) **a + b =8"

(¢) “‘a divides b'*

(d) “‘a is greater than b

(e) *‘a is equal to b’

(f) *'the square of a is b’

(g) “‘a —bis divisible by 5

. Using the open sentences in Exercise 3 deter- ‘3
mine ifeachis or is nota symmetric relation on
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5. Using the open sentences in Exercises 3 de-
termine it each is or is not a transitive relation
on W,

6. Which of the relations, in Exercise 3, if any,
are equivalence relations?

7. (a) When is a relation R in a setA not reflexive?

(b) When is a relation R on a set A not sym.
metric?

(c) When is a relation R on a set A not transi-
tive?

8.LetA = {1, 2, 3}. Consider the fol lowing re-
lations on A,

Ry = {(1,1), (1,2), (1,3), (2,1), (2,3)}
Ry = {(1,1), (2,3), (32), (1,2), 3,1)}
Ry = {(1,2), (2,3), (1,3)}

Ry = {(1,1)

Rg=AX A

Determine whether or not each of these rela-
tions is

(c) reflexive
(b) symmetric
(c) transitive

9. Examine the relation ‘‘is a brother of'® for a set
of people with respect to

(a) reflexivity
(b) symmetry

(c) transitivity
10. Let A = {qg, b, c}. Consider the following rela-

1 tions on A,

% R] = {(a,a), (b,a), (bb), (c,b), (b,c)}
Ry = {(a,a)}

Ry = {(a,b)}

] Ry = {(a,a), (be), (c,b)}

Rs = AX A

Determine whether or not each of the above re-
lations is anti-symmetric,

11. Let L be a set of lines in the plane and let P
; be the relation on L defined by ¢ Q] is paral-
¢ lel to 02”0

3 Determine whether or not P is (a) reflexive,
(b) symmetric, (c) transitive, (d) anti-sym-
metric, (e) an equivaience relation, (Assume a
line is parallel to itself)

12. Lot S be the collection of subsetsof {x, y, z}.
I1f A and B are alements of S the following are
relations on S:

(i) ICA g B”
(i) “A € B"

(iii) “*A is disjoint from B’
(iv) ‘A is not equal to B”

Determine if the above relations on S are (a)
reflexive, (b) symmetric, (c) transitive and (d)
anti-symmetric,

8.3 Partitions

Examine the drawing below in which we have
drawn a closed curve about a set of eleven geometric
figures. Let us designate this set of figures as G.

//Q\ 7 %
S CGC

We se2 that not all of the figures have the same num-
ber of sides. In fact we find there are four 3-sided fig-

- yres (i.e., 4 triangles), four 4-sided figures (i.e., 4

quadrilaterals), two 5-sided figures (i.e. 5 pentagons)
and one 6-sided figurs (i.e., 1 hexagon).

Next we define a relation R on the set G as fol-
lows: If x and y are any elements of G we say that xRy
ifand only if x and y have the same number of sides.

Thus any two triangles in G are in the relation R
to each other whereas a triangle and a quadrilateral
are not in e relation R to each other,

Because every geometric figure in G has the same
number of sides as itself, we have that R is reflexive
on G. If x has the same number of sides as y, then y
has the same number of sides as x. Hence, R is sym-
metric on G, Also if x has the same number of sides
asy and y has the same number of sides as z, then x
has the same number of sides as z. Thus R is transi-
tive on G. From the above we conclude thei Ris an
equivalence relation on G,

Let us now examine the effect of the equivalence
relation R on the set G, It is important to nate that the
relation R effects a separation of the elements of G in-
to subsets, Each of these subsets contains exactly
those gaometric figuras which have the same number
of sides (See how this is indicated in the drawing a-
bove). Let us designate these subsets of G as T (the
set of triangles), Q (the set of quadrilaterals), P (the
set of pentagons), and H (the set of hexagons). The
collection of subsets of G

{T7,Q,P, H}

produced by the equivalence relation R on G we coll
a partition of G,

The subsets which form the partition of G have
two important propeities which we next observe.

Observation 1: The union of the subset T, Q, P,
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and H of G is the set G. That is By = {1,5,9}, B% - {2,6,10}, By =
T UQU PU H=G {317111}1 B4= 4,8,12}-

Observation 2: The subsets T, Q, P, and H of G We note that ByU B, U BsU B4 = A

are pairwise disjoint. This means and also that By N By =@, ByN By =
that if we consider any two dis- g, BiNBy-= ¢‘. 3& N % = ¢l. BN
tinct subsets their intersection is B4 =¢: and B3 N 4 =
the empty set. We see that this is Thus R effects the partition {By, By,
true because 33, B4} on A,
TNQ =@, TNP =@, TNH-= g Example 3: L.et C be the set of students in a class.
QNP -0, QNH =@, andPNH= @. it is cleor that the relation “'has the
. ) . same first name as’’ is an equivalence
It is no uccident that R effected a partition of G into relation on C. Further, this relation
pairwise disjoint subsets whose union is G. It tums partitions C into equivalence classes,
out that we obtained such a partition of G because R (Exomine your own class.) It could

happen that every student had a differ-
ent name. If in such a class there are
twenty students we find that the equiv-

is an equivalence relation on G. The most significant
property of an equivalence relation on a set is that it

always partitions the set into pairwise disjoint subsets ’ ) i
whose union is the given sez. alence relation still partitions the set.

We could also say that an equivalence relation R '.’"T: “‘E" elqm;mlenie ;‘I‘ass mould :9ve ;
on a sot A partitions the set by putting those elements 't?c:n ;:::;‘ dgbee:e:;:'l‘\;vin ust;’ene'ypa ;:v ,'
which are related to each otherin the same subset of alence classes as elemengts. 9 ;

A. Each of these subsets is called an equivalence
class. In the example above T, Q, P, and H are equiv-
alence classes. The following examples will illustrate
many of the ideas examined above, .

Example 1: We shall define a relation R on the set

Example 4: Let A = {q,b,c}. We find that there
are five different possible partitions
of A. These are,

(i) { {a, b, c}}

3 Z of integers as follows: Let x and y (i) { {a}, {b, c}}
. be any two integers. We say xRy if
a and only if both x and y are even or ('.") {{b}, {a, c})
x both x and y are odd. Thus -3R7 but (iv) { {c}, {a, b}}
-3K8. The relation R is an equivai- (v) { {a}, {b}, {c}}
, ence ":""i?ﬂ on i (Pra:; f::is.) More- Each of the five sets above is aparti-
4 ov:r the r: ;tlon establishes two tion of A, Again we see that the ele-
3 subsets of &: . ments of a partition are sets, In (i)
E E=-{x:xEZ xiseven; and the elements that make up the partition :
3 0={x:x€EZ xis odd { {a}, {b, ¢} } are the equivalence :
] . A . ’fls,o ) classes {a}and {b, c}. We have that
Every integer in Z is either an element {a} U {b, c} = {q, b, c} =A. Also
in E or an element in O, but never an £ x|
2 element in both E and O. {a} y {b, <} -2. 3
: NELO=<Z and Similar siatements are possible for (i), :
" MEUO =2 an (iii), (iv), and (V). ;
ﬂ (HENO =0 You have already encountered, in earlier chapters,
3 The equivalance relation R on Z of- examples of equivalence relations induecing a partition 3
6' fects a partition on Z. This partition ona set. In Chapter 4 you constructed the set of inte-
is {E, O}. E and O are equivalence gers. Recall that you were shown that each integer in
classes in this partition. Z is a set of orderedpairs (a, b) of whole numbers,
‘ Example 2: Let A ={1,2, 3, 4,5,6,7, 8,9, 10, Such integers as
1N, 12}. We dafine a relation R on A +4 = { (0,4), (1,5), 2,6), 3,7), ...}
: as follows: Let a and b be any ele- -
:;f ments of A, We say aRb ifand only if 0 = {(0,0), (1.1 2.2), B3), ... }
-3 ={ (3,0, (41,52, 63),...}

a and b have the same remainder when
they are divided by 4. It is easy to see  illustrate that every integer is a set of ordered pairs
that R is an equivalence relation on A of whole numbers. Using the language of this chapter !

which determines the following subsets  we can now say that the set Z of integers is a parti- .
of A: tion of the set W X W. Each integer is an equivalence |
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closs in this partition. Observe that the union of all

" integers is W X W and the intersection of any pair of

distinct integers is the empty set. Do you recall the

. relation R which effected this partition of W X W into

. the equivalence classes called integers?

] Using some ideas of this chapter we shall again
define that relation. Let (a,b) and (c,d) be any elements

of W X W, We say that (a, b)R(c,d) if and only if a+d =

' bic. Thus (1,5)R(3,7) because 147 = 5+3. If two ele-

. ments of W X W are in the relation R to each other

. they belong to the same equivalence class. We see

that this is true here since (1,5) € + 4and (3,7) € + 4.

It can be shown that the relation R is an equivalence

- celation on W X W. But we will leave this for an exer-

. cise,

We are seldom interesied in a set unless some re-
lation or operaticn has been defined on the set, In this
settion we have seen that defining an equivalence re-
lation R on a set A yields a partition of A into equiv-

. alence classes, We might say that the relation Ron A

. gives a structure to the set A, Of course different rela-
tions defined on A yield different structures. We shall
_next consider another important way to structure a set
which deals with *he frequently encountered idea of
order,

A partial order on a set \ is a relation on A which
is

(1) reflexive, i.e., for every a€A, aRa
(2) anti-symmetric, i.e., for all a, bER, aRb
and bRa implies a = b,

(3) transitive, i.e., forall a, b, c ER, aRb
and bRc implies aRe,

Example 1: Let S be the collection of all subsets
of {a, b}. The relation ** C "' defined
on S is a partial order on S. Why? This
relation is illustrated by the arrow dia-
gram below.

{o.b}

Example 2: Let A = {1, 2, 3,4, 5, 6}.

The relation “divides’’ defined on A
is a partial order on A, Explain, The
arrow diagram below illustrates this
relation.

8.14 Exercises
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1. LetA = {1, 2,3, 4,5, 6}. Explain why each
of the following is or is not a portition of A,

(@) { {1,2}, {56.3} }
(b) { {1,2}, {3}, {4,5}, {6,2} }
(e) { {1,3,5}, {246}}
(d) { {13}, {2}, {3}, {4}, {5}, {6}}
(e) { {1}, {6,4}, {3,52}}
¢y { {1,2,3,4}, {456} }
(e) { {1,2,3,4,56}}
(h { {1,2}, {3,4}}
2. Find all the partitions of {a,b}.

3. Explain why *’<"’* defined on W does not parti-
tion W,

4, Let R be an equivalence relation on A, If we
assume that cRa and cRb why can we conclude

that aRb?
5. Find all the partitions of {1,2,3,4}.

6. (a) Use an arrow diagram to illustrate the re-
lation ‘‘divides” on the set E = {1, 2, 3,
5, 6, 10, 15, 30}. Is this relation a partial

ordering on E*/

(b) Explain why or why not the relation " <"’
is a partial ordering on the set W.

7. Consider the following relations defined on the
set P of people in the United States:

Ry : “livesin the same state as”
R2 : *lives within 1 mile of"
R3: ‘tis the father of"’

Ry4: “'is a member of the same political party
os”

R : “'has the same 1.Q. os’’

(a) Determine which of the above are equival-
ence relationson P.
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(b) Describe the equivalence classes in the
partitions effected by the relations in (a)
which are equivalence relations on P.

8. In Section 8.13 we defined a relation Ron W X
W as follows: (a,b)R(c,d) if and only if a+d =
b+ c. Prove that R is an equivalence relation.

9. Research Problem: Let R be an equivalence re-
lation on A. For every a EA, let

B, = {x: xRa}
Prove that R effects a partition on A,

8.15 Summary

In this chapter you have encountered some of the
most basic terms used in the study of mathematics.
Terms such as set, relation, partition, etc. will be-
come, in time, part of your basic vocabulary.

With respect to sets you should be able to give a
clear and complete description of the following terms:

set equality, subset, proper subset, vniversal
set, union, intersection, empty se?, comple-
ment, disjoint sets, product set.

With respect to relations you should understand
what is meant by the fol lowing terms:

relation, inverse relation, reflexivity, irreflex-
ivity, symmetry, transitivity, anti-symmetry,
equivalence relation, partition, partial order.

Also you should be aware of the tools we have used
in our study. These tools include:

set notation, Venn diagrams, membership tables,

arrow diagrams, the conditional relation P

At this time you should review, for yourself, the
meanings of the above terms, Restudy any terms whose
‘ meanings are not clear to you.

8.16 Review Exercises

1. Let S be a universal set where
S= {pl qfr S t,v, V}

Let A= {P: q T S}l B - {t: v, V}l C-
{pl nt v}l D= {t}

(a) Determine the following sets:

(WAUB (5BUC 9D UD
@ANB (BNC (0)BNB
BJAUC (MAuUD (MsSND
@ANC (®AND (12SUD

(b) Find the complement of each of the follow-
ing sets:

(MA (3 C
(2) B @9 ANC
(c) Which of the sets A, B, C, D are

(55AU D
(6)A U B
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10. Let BAC = B N C. Prove o disprove that

(1) subsets of each other?
(2) proper subsets of each other?

(3) pairwise disjoint?

2. Write three statements that are true of every
set A,

3. Let B = {x:xEW, x iseven, x <3}
(a) Rewrite set B by listing its elements
(b) List all the subsets of B.
(¢) List all the proper non-empty subsets of B,
(d) Determine B X B,
(e) Is {(0,0), (0,1)} a relation on B?
(fF) 1s {(0,0), (0,2)} a relation on B?
(g) Draw an arrow diagram for BXB

4. LetV ={0, 1,2, 3}. Let R bea relation on V
defined as follows:

R = {(0,0), (0,1, (1,0), (1,2), 2, 1), (22), (0.2),
(33)}

(a) Draw the arrow diagram for Ron V
(b) Is R an equivalence relation on V?

(c) What would occur if we defined a new rela-
tion S on V where

S=RU{Q1),20}
5. (a) Prove or disprove that (A N B) Yy (AN B)
=A

B)ANBUKANB)YUANB):=?
6. Give an example of arelation R on asetA
which is
(a) reflexive, anti-symmetric, transitive
(b) reflexive, symmetric, transitive
(c) irreflexive, not symmetfric, not transitive
(d) irreflexive, not symmetric, transitive
(e) irreflexive, symmetric, transitive
7. Determine which of the folloviing aretrue
(a) IfAC B, then AC B
(b) IFAC B, then BC A
8. Let D= {2, 46,8, 10, 12}

Explain why the following are or are not parti-
tions of D:

(a) { {2,4}, {6,103, {412}, {8} }
(b) { {2,4,6}, {8,10}, (12}
() { {2}, {612}, {4,70}

9. Let R be a relation on set A, Determine if the
followingis true: R is symmetric on A if and
only if R = R,

ANBAC)=(A NB)A{A NC)
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